4 research outputs found

    Traversing the Reality Gap via Simulator Tuning

    Full text link
    The large demand for simulated data has made the reality gap a problem on the forefront of robotics. We propose a method to traverse the gap by tuning available simulation parameters. Through the optimisation of physics engine parameters, we show that we are able to narrow the gap between simulated solutions and a real world dataset, and thus allow more ready transfer of leaned behaviours between the two. We subsequently gain understanding as to the importance of specific simulator parameters, which is of broad interest to the robotic machine learning community. We find that even optimised for different tasks that different physics engine perform better in certain scenarios and that friction and maximum actuator velocity are tightly bounded parameters that greatly impact the transference of simulated solutions.Comment: 8 Pages, Submitted to IROS202

    SimTune: bridging the simulator reality gap for resource management in edge-cloud computing

    Get PDF
    Industries and services are undergoing an Internet of Things centric transformation globally, giving rise to an explosion of multi-modal data generated each second. This, with the requirement of low-latency result delivery, has led to the ubiquitous adoption of edge and cloud computing paradigms. Edge computing follows the data gravity principle, wherein the computational devices move closer to the end-users to minimize data transfer and communication times. However, large-scale computation has exacerbated the problem of efficient resource management in hybrid edge-cloud platforms. In this regard, data-driven models such as deep neural networks (DNNs) have gained popularity to give rise to the notion of edge intelligence. However, DNNs face significant problems of data saturation when fed volatile data. Data saturation is when providing more data does not translate to improvements in performance. To address this issue, prior work has leveraged coupled simulators that, akin to digital twins, generate out-of-distribution training data alleviating the data-saturation problem. However, simulators face the reality-gap problem, which is the inaccuracy in the emulation of real computational infrastructure due to the abstractions in such simulators. To combat this, we develop a framework, SimTune, that tackles this challenge by leveraging a low-fidelity surrogate model of the high-fidelity simulator to update the parameters of the latter, so to increase the simulation accuracy. This further helps co-simulated methods to generalize to edge-cloud configurations for which human encoded parameters are not known apriori. Experiments comparing SimTune against state-of-the-art data-driven resource management solutions on a real edge-cloud platform demonstrate that simulator tuning can improve quality of service metrics such as energy consumption and response time by up to 14.7% and 7.6% respectively

    Quantifying the Simulation-Reality Gap for Deep Learning-Based Drone Detection

    Get PDF
    The detection of drones or unmanned aerial vehicles is a crucial component in protecting safety-critical infrastructures and maintaining privacy for individuals and organizations. The widespread use of optical sensors for perimeter surveillance has made optical sensors a popular choice for data collection in the context of drone detection. However, efficiently processing the obtained sensor data poses a significant challenge. Even though deep learning-based object detection models have shown promising results, their effectiveness depends on large amounts of annotated training data, which is time consuming and resource intensive to acquire. Therefore, this work investigates the applicability of synthetically generated data obtained through physically realistic simulations based on three-dimensional environments for deep learning-based drone detection. Specifically, we introduce a novel three-dimensional simulation approach built on Unreal Engine and Microsoft AirSim for generating synthetic drone data. Furthermore, we quantify the respective simulation-reality gap and evaluate established techniques for mitigating this gap by systematically exploring different compositions of real and synthetic data. Additionally, we analyze the adaptation of the simulation setup as part of a feedback loop-based training strategy and highlight the benefits of a simulation-based training setup for image-based drone detection, compared to a training strategy relying exclusively on real-world data

    Traversing the Reality Gap via Simulator Tuning

    No full text
    The large demand for simulated data has made the reality gap a problem on the forefront of robotics. We propose a method to traverse the gap by tuning available simulation parameters. Through the optimisation of physics engine parameters, we show that we are able to narrow the gap between simulated solutions and a real world dataset, and thus allow more ready transfer of learned behaviours between the two. We subsequently gain understanding as to the importance of specific simulator parameters, which is of broad interest to the robotic machine learning community. We find that even optimised for different tasks that different physics engine perform better in certain scenarios and that friction and maximum actuator velocity are tightly bounded parameters that greatly impact the transference of simulated solutions.</p
    corecore