4,780 research outputs found

    Short-term Demand Forecasting for Online Car-hailing Services using Recurrent Neural Networks

    Full text link
    Short-term traffic flow prediction is one of the crucial issues in intelligent transportation system, which is an important part of smart cities. Accurate predictions can enable both the drivers and the passengers to make better decisions about their travel route, departure time and travel origin selection, which can be helpful in traffic management. Multiple models and algorithms based on time series prediction and machine learning were applied to this issue and achieved acceptable results. Recently, the availability of sufficient data and computational power, motivates us to improve the prediction accuracy via deep-learning approaches. Recurrent neural networks have become one of the most popular methods for time series forecasting, however, due to the variety of these networks, the question that which type is the most appropriate one for this task remains unsolved. In this paper, we use three kinds of recurrent neural networks including simple RNN units, GRU and LSTM neural network to predict short-term traffic flow. The dataset from TAP30 Corporation is used for building the models and comparing RNNs with several well-known models, such as DEMA, LASSO and XGBoost. The results show that all three types of RNNs outperform the others, however, more simple RNNs such as simple recurrent units and GRU perform work better than LSTM in terms of accuracy and training time.Comment: arXiv admin note: text overlap with arXiv:1706.06279, arXiv:1804.04176 by other author

    Multi-headed self-attention mechanism-based Transformer model for predicting bus travel times across multiple bus routes using heterogeneous datasets

    Get PDF
    Bus transit is a crucial component of transportation networks, especially in urban areas. Bus agencies must enhance the quality of their real-time bus travel information service to serve their passengers better and attract more travelers. Various models have recently been developed for estimating bus travel times to increase the quality of real-time information service. However, most are concentrated on smaller road networks due to their generally subpar performance in densely populated urban regions on a vast network and failure to produce good results with long-range dependencies. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database and the vehicle probe data. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. This study developed a multi-headed self-attention mechanism-based Univariate Transformer neural network to predict the mean vehicle travel times for different hours of the day for multiple stations across multiple routes. In addition, we developed Multivariate GRU and LSTM neural network models for our research to compare the prediction accuracy and comprehend the robustness of the Transformer model. To validate the Transformer Model's performance more in comparison to the GRU and LSTM models, we employed the Historical Average Model and XGBoost model as benchmark models. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. Only the historical average bus travel time was used as the input parameter for the Transformer model. Other features, including spatial and temporal information, volatility measures (e.g., the standard deviation and variance of travel time), dwell time, expected travel time, jam factors, hours of a day, etc., were captured from our dataset. These parameters were employed to develop the Multivariate GRU and LSTM models. The model's performance was evaluated based on a performance metric called Mean Absolute Percentage Error (MAPE). The results showed that the Transformer model outperformed other models for one-hour ahead prediction having minimum and mean MAPE values of 4.32 percent and 8.29 percent, respectively. We also investigated that the Transformer model performed the best during different traffic conditions (e.g., peak and off-peak hours). Furthermore, we also displayed the model computation time for the prediction; XGBoost was found to be the quickest, with a prediction time of 6.28 seconds, while the Transformer model had a prediction time of 7.42 seconds. The study's findings demonstrate that the Transformer model showed its applicability for real-time travel time prediction and guaranteed the high quality of the predictions produced by the model in the context of a complicated extensive transportation network in high-density urban areas and capturing long-range dependencies.Includes bibliographical references

    Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach

    Full text link
    Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependences, temporal dependences, and exogenous dependences need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependences within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. Experimental results, validated on real-world data provided by DiDi Chuxing, show that the FCL-Net achieves better predictive performance than traditional approaches including both classical time-series prediction models and neural network based algorithms (e.g., artificial neural network and LSTM). This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations.Comment: 39 pages, 10 figure

    Scalable Deep Traffic Flow Neural Networks for Urban Traffic Congestion Prediction

    Full text link
    Tracking congestion throughout the network road is a critical component of Intelligent transportation network management systems. Understanding how the traffic flows and short-term prediction of congestion occurrence due to rush-hour or incidents can be beneficial to such systems to effectively manage and direct the traffic to the most appropriate detours. Many of the current traffic flow prediction systems are designed by utilizing a central processing component where the prediction is carried out through aggregation of the information gathered from all measuring stations. However, centralized systems are not scalable and fail provide real-time feedback to the system whereas in a decentralized scheme, each node is responsible to predict its own short-term congestion based on the local current measurements in neighboring nodes. We propose a decentralized deep learning-based method where each node accurately predicts its own congestion state in real-time based on the congestion state of the neighboring stations. Moreover, historical data from the deployment site is not required, which makes the proposed method more suitable for newly installed stations. In order to achieve higher performance, we introduce a regularized Euclidean loss function that favors high congestion samples over low congestion samples to avoid the impact of the unbalanced training dataset. A novel dataset for this purpose is designed based on the traffic data obtained from traffic control stations in northern California. Extensive experiments conducted on the designed benchmark reflect a successful congestion prediction
    • …
    corecore