5 research outputs found

    Optimizing Taxi Carpool Policies via Reinforcement Learning and Spatio-Temporal Mining

    Full text link
    In this paper, we develop a reinforcement learning (RL) based system to learn an effective policy for carpooling that maximizes transportation efficiency so that fewer cars are required to fulfill the given amount of trip demand. For this purpose, first, we develop a deep neural network model, called ST-NN (Spatio-Temporal Neural Network), to predict taxi trip time from the raw GPS trip data. Secondly, we develop a carpooling simulation environment for RL training, with the output of ST-NN and using the NYC taxi trip dataset. In order to maximize transportation efficiency and minimize traffic congestion, we choose the effective distance covered by the driver on a carpool trip as the reward. Therefore, the more effective distance a driver achieves over a trip (i.e. to satisfy more trip demand) the higher the efficiency and the less will be the traffic congestion. We compared the performance of RL learned policy to a fixed policy (which always accepts carpool) as a baseline and obtained promising results that are interpretable and demonstrate the advantage of our RL approach. We also compare the performance of ST-NN to that of state-of-the-art travel time estimation methods and observe that ST-NN significantly improves the prediction performance and is more robust to outliers.Comment: Accepted at IEEE International Conference on Big Data 2018. arXiv admin note: text overlap with arXiv:1710.0435

    Modeling the Effect of a Road Construction Project on Transportation System Performance

    Get PDF
    Road construction projects create physical changes on roads that result in capacity reduction and travel time escalation during the construction project period. The reduction in the posted speed limit, the number of lanes, lane width and shoulder width at the construction zone makes it difficult for the road to accommodate high traffic volume. Therefore, the goal of this research is to model the effect of a road construction project on travel time at road link-level and help improve the mobility of people and goods through dissemination or implementation of proactive solutions. Data for a resurfacing construction project on I-485 in the city of Charlotte, North Carolina (NC) was used evaluation, analysis, and modeling. A statistical t-test was conducted to examine the relationship between the change in travel time before and during the construction project period. Further, travel time models were developed for the freeway links and the connecting arterial street links, both before and during the construction project period. The road network characteristics of each link, such as the volume/ capacity (V/C), the number of lanes, the speed limit, the shoulder width, the lane width, whether the link is divided or undivided, characteristics of neighboring links, the time-of-the-day, the day-of-the-week, and the distance of the link from the road construction project were considered as predictor variables for modeling. The results obtained indicate that a decrease in travel time was observed during the construction project period on the freeway links when compared to the before construction project period. Contrarily, an increase in travel time was observed during the construction project period on the connecting arterial street links when compared to the before construction project period. Also, the average travel time, the planning time, and the travel time index can better explain the effect of a road construction project on transportation system performance when compared to the planning time index and the buffer time index. The influence of predictor variables seem to vary before and during the construction project period on the freeway links and connecting arterial street links. Practitioners should take the research findings into consideration, in addition to the construction zone characteristics, when planning a road construction project and developing temporary traffic control and detour plans

    Travel time forecasting using probe vehicle data on freeways

    Get PDF
    This master thesis deals with the problem of traffic forecasting using probe vehicle data on freeways. The main goal of this master thesis is to perform travel forecasting using different models and evaluate these models with distinct conditions
    corecore