2,125 research outputs found

    Transposition errors in diffusion-based mobile molecular communication

    Get PDF
    In this work, we investigate diffusion-based molecular communication between two mobile nano-machines. We derive a closed-form expression for the first hitting time distribution, by characterizing the motion of the information particles and the nano-machines via Brownian motion. We validate the derived expression through a particle-based simulation. For the information transfer we consider single particles of different types, where transposition errors are the dominant source of errors. We derive an analytical expression for the expected bit error probability and evaluate the error performance for the static and the mobile case by means of computer simulations

    On the Impact of Transposition Errors in Diffusion-Based Channels

    Get PDF
    In this work, we consider diffusion-based molecular communication with and without drift between two static nano-machines. We employ type-based information encoding, releasing a single molecule per information bit. At the receiver, we consider an asynchronous detection algorithm which exploits the arrival order of the molecules. In such systems, transposition errors fundamentally undermine reliability and capacity. Thus, in this work we study the impact of transpositions on the system performance. Towards this, we present an analytical expression for the exact bit error probability (BEP) caused by transpositions and derive computationally tractable approximations of the BEP for diffusion-based channels with and without drift. Based on these results, we analyze the BEP when background is not negligible and derive the optimal bit interval that minimizes the BEP. Simulation results confirm the theoretical results and show the error and goodput performance for different parameters such as block size or noise generation rate.Comment: This paper has been submitted to IEEE Transactions on Communication

    Abnormality Detection inside Blood Vessels with Mobile Nanomachines

    Full text link
    Motivated by the numerous healthcare applications of molecular communication within Internet of Bio-Nano Things (IoBNT), this work addresses the problem of abnormality detection in a blood vessel using multiple biological embedded computing devices called cooperative biological nanomachines (CNs), and a common receiver called the fusion center (FC). Due to blood flow inside a vessel, each CN and the FC are assumed to be mobile. In this work, each of the CNs perform abnormality detection with certain probabilities of detection and false alarm by counting the number of molecules received from a source, e.g., infected tissue. These CNs subsequently report their local decisions to a FC over a diffusion-advection blood flow channel using different types of molecules in the presence of inter-symbol interference, multi-source interference, and counting errors. Due to limited computational capability at the FC, OR and AND logic based fusion rules are employed to make the final decision after obtaining each local decision based on the optimal likelihood ratio test. For the aforementioned system, probabilities of detection and false alarm at the FC are derived for OR and AND fusion rules. Finally, simulation results are presented to validate the derived analytical results, which provide important insights.Comment: Submitted to IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Letters for possible publicatio

    Molecular information delivery in porous media

    Get PDF
    Information delivery via molecular signals is abundant in nature and potentially useful for industry sensing. Many propagation channels (e.g., tissue membranes and catalyst beds) contain porous medium materials and the impact this has on communication performance is not well understood. Here, communication through realistic porous channels is investigated for the first time via statistical breakthrough curves. Assuming that the number of arrived molecules can be approximated as a Gaussian random variable and using fully resolved computational fluid dynamics results for the breakthrough curves, the numerical results for the throughput, mutual information, error probability, and information diversity gain are presented. Using these numerical results, the unique characteristics of the porous medium channel are revealed

    Uncertainty Quantification in Molecular Signals using Polynomial Chaos Expansion

    Full text link
    Molecular signals are abundant in engineering and biological contexts, and undergo stochastic propagation in fluid dynamic channels. The received signal is sensitive to a variety of input and channel parameter variations. Currently we do not understand how uncertainty or noise in a variety of parameters affect the received signal concentration, and nor do we have an analytical framework to tackle this challenge. In this paper, we utilize Polynomial Chaos Expansion (PCE) to show to uncertainty in parameters propagates to uncertainty in the received signal. In demonstrating its applicability, we consider a Turbulent Diffusion Molecular Communication (TDMC) channel and highlight which parameters affect the received signals. This can pave the way for future information theoretic insights, as well as guide experimental design
    • …
    corecore