822 research outputs found

    Random Access Transport Capacity

    Full text link
    We develop a new metric for quantifying end-to-end throughput in multihop wireless networks, which we term random access transport capacity, since the interference model presumes uncoordinated transmissions. The metric quantifies the average maximum rate of successful end-to-end transmissions, multiplied by the communication distance, and normalized by the network area. We show that a simple upper bound on this quantity is computable in closed-form in terms of key network parameters when the number of retransmissions is not restricted and the hops are assumed to be equally spaced on a line between the source and destination. We also derive the optimum number of hops and optimal per hop success probability and show that our result follows the well-known square root scaling law while providing exact expressions for the preconstants as well. Numerical results demonstrate that the upper bound is accurate for the purpose of determining the optimal hop count and success (or outage) probability.Comment: Submitted to IEEE Trans. on Wireless Communications, Sept. 200

    Scaling Laws of Cognitive Networks

    Full text link
    We consider a cognitive network consisting of n random pairs of cognitive transmitters and receivers communicating simultaneously in the presence of multiple primary users. Of interest is how the maximum throughput achieved by the cognitive users scales with n. Furthermore, how far these users must be from a primary user to guarantee a given primary outage. Two scenarios are considered for the network scaling law: (i) when each cognitive transmitter uses constant power to communicate with a cognitive receiver at a bounded distance away, and (ii) when each cognitive transmitter scales its power according to the distance to a considered primary user, allowing the cognitive transmitter-receiver distances to grow. Using single-hop transmission, suitable for cognitive devices of opportunistic nature, we show that, in both scenarios, with path loss larger than 2, the cognitive network throughput scales linearly with the number of cognitive users. We then explore the radius of a primary exclusive region void of cognitive transmitters. We obtain bounds on this radius for a given primary outage constraint. These bounds can help in the design of a primary network with exclusive regions, outside of which cognitive users may transmit freely. Our results show that opportunistic secondary spectrum access using single-hop transmission is promising.Comment: significantly revised and extended, 30 pages, 13 figures, submitted to IEEE Journal of Special Topics in Signal Processin

    Transmission Capacities for Overlaid Wireless Ad Hoc Networks with Outage Constraints

    Full text link
    We study the transmission capacities of two coexisting wireless networks (a primary network vs. a secondary network) that operate in the same geographic region and share the same spectrum. We define transmission capacity as the product among the density of transmissions, the transmission rate, and the successful transmission probability (1 minus the outage probability). The primary (PR) network has a higher priority to access the spectrum without particular considerations for the secondary (SR) network, where the SR network limits its interference to the PR network by carefully controlling the density of its transmitters. Assuming that the nodes are distributed according to Poisson point processes and the two networks use different transmission ranges, we quantify the transmission capacities for both of these two networks and discuss their tradeoff based on asymptotic analyses. Our results show that if the PR network permits a small increase of its outage probability, the sum transmission capacity of the two networks (i.e., the overall spectrum efficiency per unit area) will be boosted significantly over that of a single network.Comment: 6 pages, 5 figures, accepted by IEEE ICC 200
    • …
    corecore