1,803 research outputs found

    Synchronization in wireless communications

    Get PDF
    The last decade has witnessed an immense increase of wireless communications services in order to keep pace with the ever increasing demand for higher data rates combined with higher mobility. To satisfy this demand for higher data rates, the throughput over the existing transmission media had to be increased. Several techniques were proposed to boost up the data rate: multicarrier systems to combat selective fading, ultra wide band (UWB) communications systems to share the spectrum with other users, MIMO transmissions to increase the capacity of wireless links, iteratively decodable codes (e.g., turbo codes and LDPC codes) to improve the quality of the link, cognitive radios, and so forth

    Transparent Spectrum Co-Access in Cognitive Radio Networks

    Get PDF
    The licensed wireless spectrum is currently under-utilized by as much as 85%. Cognitive radio networks have been proposed to employ dynamic spectrum access to share this under-utilized spectrum between licensed primary user transmissions and unlicensed secondary user transmissions. Current secondary user opportunistic spectrum access methods, however, remain limited in their ability to provide enough incentive to convince primary users to share the licensed spectrum, and they rely on primary user absence to guarantee secondary user performance. These challenges are addressed by developing a Dynamic Spectrum Co-Access Architecture (DSCA) that allows secondary user transmissions to co-access transparently and concurrently with primary user transmissions. This work exploits dirty paper coding to precode the cognitive radio channel utilizing the redundant information found in primary user relay networks. Subsequently, the secondary user is able to provide incentive to the primary user through increased SINR to encourage licensed spectrum sharing. Then a region of co-accessis formulated within which any secondary user can co-access the licensed channel transparently to the primary user. In addition, a Spectrum Co-Access Protocol (SCAP) is developed to provide secondary users with guaranteed channel capacity and while minimizing channel access times. The numerical results show that the SCAP protocol build on the DSCA architecture is able to reduce secondary user channel access times compared with opportunistic spectrum access and increased secondary user network throughput. Finally, we present a novel method for increasing the secondary user channel capacity through sequential dirty paper coding. By exploiting similar redundancy in secondary user multi-hop networks as in primary user relay networks, the secondary user channel capacity can be increased. As a result of our work in overlay spectrum sharing through secondary user channel precoding, we provide a compelling argument that the current trend towards opportunistic spectrum sharing needs to be reconsidered. This work asserts that limitations of opportunistic spectrum access to transparently provide primary users incentive and its detrimental effect on secondary user performance due to primary user activity are enough to motivate further study into utilizing channel precoding schemes. The success of cognitive radios and its adoption into federal regulator policy will rely on providing just this type of incentive

    Opportunistic Spectrum Utilization by Cognitive Radio Networks: Challenges and Solutions

    Get PDF
    Cognitive Radio Network (CRN) is an emerging paradigm that makes use of Dynamic Spectrum Access (DSA) to communicate opportunistically, in the un-licensed Industrial, Scientific and Medical bands or frequency bands otherwise licensed to incumbent users such as TV broadcast. Interest in the development of CRNs is because of severe under-utilization of spectrum bands by the incumbent Primary Users (PUs) that have the license to use them coupled with an ever-increasing demand for unlicensed spectrum for a variety of new mobile and wireless applications. The essence of Cognitive Radio (CR) operation is the cooperative and opportunistic utilization of licensed spectrum bands by the Secondary Users (SUs) that collectively form the CRN without causing any interference to PUs\u27 communications. CRN operation is characterized by factors such as network-wide quiet periods for cooperative spectrum sensing, opportunistic/dynamic spectrum access and non-deterministic operation of PUs. These factors can have a devastating impact on the overall throughput and can significantly increase the control overheads. Therefore, to support the same level of QoS as traditional wireless access technologies, very closer interaction is required between layers of the protocol stack. Opportunistic spectrum utilization without causing interference to the PUs is only possible if the SUs periodically sense the spectrum for the presence of PUs\u27 signal. To minimize the effects of hardware capabilities, terrain features and PUs\u27 transmission ranges, DSA is undertaken in a collaborative manner where SUs periodically carry out spectrum sensing in their respective geographical locations. Collaborative spectrum sensing has numerous security loopholes and can be favorable to malicious nodes in the network that may exploit vulnerabilities associated with DSA such as launching a spectrum sensing data falsification (SSDF) attack. Some CRN standards such as the IEEE 802.22 wireless regional area network employ a two-stage quiet period mechanism based on a mandatory Fast Sensing and an optional Fine Sensing stage for DSA. This arrangement is meant to strike a balance between the conflicting goals of proper protection of incumbent PUs\u27 signals and optimum QoS for SUs so that only as much time is spent for spectrum sensing as needed. Malicious nodes in the CRN however, can take advantage of the two-stage spectrum sensing mechanism to launch smart denial of service (DoS) jamming attacks on CRNs during the fast sensing stage. Coexistence protocols enable collocated CRNs to contend for and share the available spectrum. However, most coexistence protocols do not take into consideration the fact that channels of the available spectrum can be heterogeneous in the sense that they can vary in their characteristics and quality such as SNR or bandwidth. Without any mechanism to enforce fairness in accessing varying quality channels, ensuring coexistence with minimal contention and efficient spectrum utilization for CRNs is likely to become a very difficult task. The cooperative and opportunistic nature of communication has many challenges associated with CRNs\u27 operation. In view of the challenges described above, this dissertation presents solutions including cross-layer approaches, reputation system, optimization and game theoretic approaches to handle (1) degradation in TCP\u27s throughput resulting from packet losses and disruptions in spectrum availability due non-deterministic use of spectrum by the PUs (2) presence of malicious SUs in the CRN that may launch various attacks on CRNs\u27 including SSDF and jamming and (3) sharing of heterogeneous spectrum resources among collocated CRNs without a centralized mechanism to enforce cooperation among otherwise non-cooperative CRN

    Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies

    Full text link
    High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture
    • …
    corecore