17,727 research outputs found

    Embedded Rank Distance Codes for ISI channels

    Get PDF
    Designs for transmit alphabet constrained space-time codes naturally lead to questions about the design of rank distance codes. Recently, diversity embedded multi-level space-time codes for flat fading channels have been designed from sets of binary matrices with rank distance guarantees over the binary field by mapping them onto QAM and PSK constellations. In this paper we demonstrate that diversity embedded space-time codes for fading Inter-Symbol Interference (ISI) channels can be designed with provable rank distance guarantees. As a corollary we obtain an asymptotic characterization of the fixed transmit alphabet rate-diversity trade-off for multiple antenna fading ISI channels. The key idea is to construct and analyze properties of binary matrices with a particular structure induced by ISI channels.Comment: Submitted to IEEE Transactions on Information Theor

    Maximum-rate Transmission with Improved Diversity Gain for Interference Networks

    Full text link
    Interference alignment (IA) was shown effective for interference management to improve transmission rate in terms of the degree of freedom (DoF) gain. On the other hand, orthogonal space-time block codes (STBCs) were widely used in point-to-point multi-antenna channels to enhance transmission reliability in terms of the diversity gain. In this paper, we connect these two ideas, i.e., IA and space-time block coding, to improve the designs of alignment precoders for multi-user networks. Specifically, we consider the use of Alamouti codes for IA because of its rate-one transmission and achievability of full diversity in point-to-point systems. The Alamouti codes protect the desired link by introducing orthogonality between the two symbols in one Alamouti codeword, and create alignment at the interfering receiver. We show that the proposed alignment methods can maintain the maximum DoF gain and improve the ergodic mutual information in the long-term regime, while increasing the diversity gain to 2 in the short-term regime. The presented examples of interference networks have two antennas at each node and include the two-user X channel, the interferring multi-access channel (IMAC), and the interferring broadcast channel (IBC).Comment: submitted to IEEE Transactions on Information Theor

    Pulse Shaping Diversity to Enhance Throughput in Ultra-Dense Small Cell Networks

    Full text link
    Spatial multiplexing (SM) gains in multiple input multiple output (MIMO) cellular networks are limited when used in combination with ultra-dense small cell networks. This limitation is due to large spatial correlation among channel pairs. More specifically, it is due to i) line-of-sight (LOS) communication between user equipment (UE) and base station (BS) and ii) in-sufficient spacing between antenna elements. We propose to shape transmit signals at adjacent antennas with distinct interpolating filters which introduces pulse shaping diversity eventually leading to improved SINR and throughput at the UEs. In this technique, each antenna transmits its own data stream with a relative offset with respect to adjacent antenna. The delay which must be a fraction of symbol period is interpolated with the pulse shaped signal and generates a virtual MIMO channel that leads to improved diversity and SINR at the receiver. Note that non-integral sampling periods with inter-symbol interference (ISI) should be mitigated at the receiver. For this, we propose to use a fractionally spaced equalizer (FSE) designed based on the minimum mean squared error (MMSE) criterion. Simulation results show that for a 2x2 MIMO and with inter-site-distance (ISD) of 50 m, the median received SINR and throughput at the UE improves by a factor of 11 dB and 2x, respectively, which verifies that pulse shaping can overcome poor SM gains in ultra-dense small cell networks.Comment: Accepted to 17th IEEE International Workshop on Signal Processing Advances in Wireless Communication

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Multi-Source Cooperative Communication with Opportunistic Interference Cancelling Relays

    Full text link
    In this paper we present a multi-user cooperative protocol for wireless networks. Two sources transmit simultaneously their information blocks and relays employ opportunistically successive interference cancellation (SIC) in an effort to decode them. An adaptive decode/amplify-and-forward scheme is applied at the relays to the decoded blocks or their sufficient statistic if decoding fails. The main feature of the protocol is that SIC is exploited in a network since more opportunities arise for each block to be decoded as the number of used relays NRU is increased. This feature leads to benefits in terms of diversity and multiplexing gains that are proven with the help of an analytical outage model and a diversity-multiplexing tradeoff (DMT) analysis. The performance improvements are achieved without any network synchronization and coordination. In the final part of this work the closed-form outage probability model is used by a novel approach for offline pre-selection of the NRU relays, that have the best SIC performance, from a larger number of NR nodes. The analytical results are corroborated with extensive simulations, while the protocol is compared with orthogonal and multi-user protocols reported in the literature.Comment: in IEEE Transactions on Communications, 201
    • …
    corecore