6 research outputs found

    Transmit Diversity Code Filter Sets (TDCFSs), an MISO Antenna Frequency Predistortion Scheme for ATSC 3.0

    Full text link
    "(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.")Transmit diversity code filter sets (TDCFSs) are a method of predistorting the common waveforms from multiple transmitters in the same frequency channel, as in a single frequency network, in order to minimize the possibility of cross-interference among the transmitted signals over the entire reception area. This processing is achieved using all-pass linear filters, allowing the resulting combination of predistortion and multipath to be properly compensated as part of the equalization process in the receiver. The filter design utilizes an iterative computational approach, which minimizes cross-correlation peak side lobe under the constraints of number of transmitters and delay spread, allowing customization for specific network configurations. This paper provides an overview of the TDCFS multiple-input single output antenna scheme adopted in ATSC 3.0, together with experimental analysis of capacity and specific worst-case conditions that illustrate the benefits of using the TDCFS approach.Lopresto, S.; Citta, R.; Vargas, D.; Gómez Barquero, D. (2016). Transmit Diversity Code Filter Sets (TDCFSs), an MISO Antenna Frequency Predistortion Scheme for ATSC 3.0. IEEE Transactions on Broadcasting. 62(1):271-280. doi:10.1109/TBC.2015.2505400S27128062

    Layered Division Multiplexing with Distributed Multiple-Input Single-Output Schemes

    Full text link
    "© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."[EN] Single frequency networks (SFNs) provides an increased spectral efficiency compared to the traditional multiple frequency networks. However, some coverage areas in SFN can be affected by destructive interferences. In order to reduce these situations, distributed multiple-input single-output (MISO) schemes have been adopted in the new digital terrestrial television standards, Alamouti in DVB-T2 and transmit diversity code filter sets in ATSC 3.0. On the other hand, layered division multiplexing (LDM), a non-orthogonal multiple access technology, has been adopted in ATSC 3.0 due to its spectral efficiency increase compared to time or frequency division multiplexing. The LDM signal is formed by a power superposition of two independent signals, which are designed for different reception conditions (mobile and fixed-rooftop). The combination of distributed MISO and LDM techniques has not been evaluated yet. In this paper, the joint transmission of LDM with distributed MISO is analyzed in terms of complexity and the joint performance is evaluated by means of physical layer simulations.This work was supported in part by the ICT Research and Development Program of MSIP/IITP (Development of Transmission Technology for Ultra High Quality UHD) under Grant 2017-0-00081, and in part by the Ministerio de Educacion y Ciencia, Spain, through European FEDER funds under Grant TEC2014-56483-R.Garro, E.; Barjau, C.; Gomez-Barquero, D.; Kim, J.; Park, S.; Hur, N. (2019). Layered Division Multiplexing with Distributed Multiple-Input Single-Output Schemes. IEEE Transactions on Broadcasting. 65(1):30-39. https://doi.org/10.1109/TBC.2018.2823643S303965

    ATSC 3.0 방송 시스템용 물리계층 GUI 시뮬레이터 구현 및 MISO 시스템 성능 분석

    Get PDF
    본 논문에서는 ATSC 3.0 물리계층 규격에서 정의되는 다양한 파라미터 조합에 따른 시뮬레이션 결과를 쉽게 확인할 수 있는 MATLAB GUI 기반의 ATSC 3.0 시뮬레이터를 구현한다. 구현된 시뮬레이터를 통하여 물리계층 파라미터 구성을 위해 필요한 시그널링 정보를 직접 설정하여 프레임 길이 [ms]와 데이터 전송률[Mbps]을 계산할 수 있다. 또한 시뮬레이션, 실내, 필드 환경 테스트에 따른 AWGN, RC20, RL20 채널에서의 요구 SNR [dB]을 알 수 있다. 시뮬레이션 동작을 위해 다양한 시뮬레이션 파라미터를 설정하여 송수신 시뮬레이션 결과를 도출할 수 있으며 송수신기의 성상도와 frequency response를 관찰할 수 있다. 시뮬레이션 동작 결과로써 수신기의 성능 검증을 위한 비트 에러율과 프레임 에러율을 관찰할 수 있다. 구현된 시뮬레이터가 다양한 파라미터 조합에 따른 동작을 지원하기 위해 본 논문에서는 PLP 다중화에 따른 셀 인덱싱 방법을 구현한다. 또한 ATSC 3.0에서 적용되는 MISO 시스템을 구현하여 MISO 시스템의 특성을 분석하고 시스템 성능을 분석한다.|In this paper, a physical layer GUI simulator for ATSC 3.0 which can easily verify the validity for various combinations of system parameters is implemented. It is possible to calculate the length of the frame and the data rate by directly setting the physical layer signaling information via the implemented simulator. In addition, it is possible to know the required signal-to-noise ratio under several channel models, e.g., AWGN, RC20, and RL20, and indoor/outdoor field tests. With the simulator, outputs of various functional blocks of ATSC 3.0 transmitter and receiver such as signal constellations and frequency responses can be observed. Also, it is possible to observe the bit error rate and the frame error rate to verify the performance of the receiver. In order to support various combinations of multiplexing schemes, the simulator provides the cell indexing method according to various PLP multiplexing schemes. Furthermore, the multiple-input single-output system of ATSC 3.0 is implemented in the simulator and the performance is analyzed.1. 서 론 1.1 연구 배경 1.2 연구 내용 2. ATSC 3.0 물리계층 시스템 2.1 송신기 시스템 구조 2.2 수신기 시스템 구조 2.3 프레임 구조 3. ATSC 3.0 물리계층 파라미터 3.1 L1-시그널링 3.1.1 L1-시그널링의 보호 3.1.2 부트스트랩 3.1.3 L1-Basic 3.1.3.1 L1-Basic: 시스템 파라미터 3.1.3.2 L1-Basic: L1-Detail 관련 파라미터 3.1.3.3 L1-Basic: 첫 번째 부프레임 파라미터 3.1.4 L1-Detail 3.1.4.1 L1-Detail: 기본 파라미터 3.1.4.2 L1-Detail: 채널 본딩 파라미터 3.1.4.3 L1-Detail: 부프레임 파라미터 3.1.4.4 L1-Detail: PLP 파라미터 3.1.4.5 L1-Detail: LDM 파라미터 3.1.4.6 L1-Detail: 채널 본딩 파라미터 3.1.4.7 L1-Detail: MIMO 파라미터 3.1.4.8 L1-Detail: 셀 다중화 파라미터 3.1.4.9 L1-Detail: 시간 인터리버 파라미터 4. 계층 분할 다중화 및 PLP 다중화 4.1 계층 분할 다중화 4.2 PLP 다중화 4.2.1 LDM을 하지 않는 경우 4.2.1.1 CL의 L1D_plp_type 가 0인 경우 4.2.1.2 CL의 L1D_plp_type가 1인 경우 4.2.2 LDM을 하는 경우 4.2.2.1 CL의 L1D_plp_type이 0인 경우 4.2.2.2 CL의 L1D_plp_type이 1인 경우 5. ATSC 3.0 물리계층 GUI 시뮬레이터 구현 5.1 GUI 시뮬레이터 인터페이스 5.1.1 부트스트랩 항목 5.1.2 프리앰블 항목 5.1.3 부프레임 항목 5.1.4 PLP 항목 5.2 GUI 시뮬레이터의 동작 결과 5.2.1 S-PLP 시뮬레이션 결과 5.2.2 LDM 시뮬레이션 결과 6. MISO 시스템 성능 분석 6.1 MISO 시스템 송수신기 구조 6.2 TDCFS 6.3 성능 분석 결과 7. 결론Maste

    An Iterative Detection Algorithm of Bootstrap Signals for ATSC 3.0 System

    Get PDF
    본 학위논문에서는 ATSC 3.0 시스템을 위한 부트스트랩 신호의 반복 검출 알고리즘을 제안한다. 부트스트랩 신호에 포함된 시그널링 정보를 검출하기 위한 최대우도 결정 규칙을 유도하였고, 검출 성능을 향상시키기 위한 반복 검출 알고리즘을 제안한다. 제안하는 검출 알고리즘은 연속하는 이전 두 개의 부트스트랩 심볼에 대한 채널 추정 값들을 반복적으로 평균한다. 또한, 본 학위논문에서는 제안하는 검출 알고리즘의 수신기 복잡도를 분석하였다. 전산 실험 결과는 기존 방법과 비교했을 때 프레임 오율이 인 경우 약 2 dB의 신호 대 잡음비 이득을 얻을 수 있음을 보여준다. 또한, 검출 성능과 복잡도를 고려한 최적의 반복 횟수를 제시하였다.|In this thesis, an iterative detection algorithm of bootstrap signals for ATSC 3.0 system is proposed. A maximum-likelihood decision rule to detect the signaling information included in the bootstrap signals is derived and the iterative detection algorithm to improve the detection performance is described. The proposed detection algorithm iteratively averages the channel estimates for the two consecutive symbols. Furthermore, this thesis analyzes the computational complexity of the proposed detection algorithm. The simulation results show that the proposed detection algorithm can obtain the signal-to-noise ratio gain of approximately 2.0 dB at frame error rate of compared to the conventional detection scheme. Also, this thesis presents the sufficient number of iterations to provide a good performance-complexity trade-off.1. 서 론 1 2. ATSC 3.0 및 부트스트랩 신호의 구조 3 2.1 ATSC 3.0 개요 3 2.2 부트스트랩 신호의 구조 5 2.2.1 부트스트랩 신호 생성 5 2.2.2 부트스트랩 신호의 순환 이동 11 2.2.3 부트스트랩 신호의 시간 영역 구조 14 2.2.4 부트스트랩 신호의 시그널링 구조 15 3. 부트스트랩 검출기 19 3.1 부트스트랩 수신기 19 3.2 부트스트랩 신호 검출을 위한 최대우도 결정 규칙 20 4. 부트스트랩 검출을 위한 제안하는 반복 검출 알고리즘 24 4.1 채널 추정 24 4.2 순방향 검출 24 4.3 역방향 검출을 위한 최대우도 결정 규칙 27 4.4 반복 검출 29 5. 복잡도 분석 33 6. 전산 실험 결과 35 7. 결론 52 참고문헌 53 감사의 글 57Maste

    Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast

    Full text link
    Tesis por compendioDesde comienzos del siglo XXI, los sistemas de radiodifusión terrestre han sido culpados de un uso ineficiente del espectro asignado. Para aumentar la eficiencia espectral, los organismos de estandarización de TV digital comenzaron a desarrollar la evolución técnica de los sistemas de TDT de primera generación. Entre otros, uno de los objetivos principales de los sistemas de TDT de próxima generación (DVB-T2 y ATSC 3.0) es proporcionar simultáneamente servicios de TV a dispositivos móviles y fijos. El principal inconveniente de esta entrega simultánea son los diferentes requisitos de cada condición de recepción. Para abordar estas limitaciones, se han considerado diferentes técnicas de multiplexación. Mientras que DVB-T2 acomete la entrega simultánea de los dos servicios mediante TDM, ATSC 3.0 adoptó la Multiplexación por División en Capas (LDM). LDM puede superar a TDM y a FDM al aprovechar la relación de Protección de Error Desigual (UEP), ya que ambos servicios, llamados capas, utilizan todos los recursos de frecuencia y tiempo con diferentes niveles de potencia. En el lado del receptor, se distinguen dos implementaciones, de acuerdo con la capa a decodificar. Los receptores móviles solo están destinados a obtener la capa superior, conocida como Core Layer (CL). Para no aumentar su complejidad en comparación con los receptores de capa única, la capa inferior, conocida como Enhanced Layer (EL), es tratada como un ruido adicional en la decodificación. Los receptores fijos aumentan su complejidad, ya que deben realizar un proceso de Cancelación de Interferencia (SIC) sobre la CL para obtener la EL. Para limitar la complejidad adicional de los receptores fijos, las capas de LDM en ATSC 3.0 están configuradas con diferentes capacidades de corrección, pero comparten el resto de bloques de la capa física, incluido el TIL, el PP, el tamaño de FFT, y el GI. Esta disertación investiga tecnologías avanzadas para optimizar el rendimiento de LDM. Primero se propone una optimización del proceso de demapeo para las dos capas de LDM. El algoritmo propuesto logra un aumento de capacidad, al tener en cuenta la forma de la EL en el proceso de demapeo de la CL. Sin embargo, el número de distancias Euclidianas a computar puede aumentar significativamente, conduciendo no solo a receptores fijos más complejos, sino también a receptores móviles más complejos. A continuación, se determina la configuración de piloto ATSC 3.0 más adecuada para LDM. Teniendo en cuenta que las dos capas comparten el mismo PP, surge una contrapartida entre la densidad de pilotos (CL) y la redundancia sobre los datos (EL). A partir de los resultados de rendimiento, se recomienda el uso de un PP no muy denso, ya que ya han sido diseñados para hacer frente a ecos largos y altas velocidades. La amplitud piloto óptima depende del estimador de canal en los receptores (ej., se recomienda la amplitud mínima para una implementación Wiener, mientras que la máxima para una implementación FFT). También se investiga la potencial transmisión conjunta de LDM con tres tecnologías avanzadas adoptadas en ATSC 3.0: las tecnologías de agregación MultiRF, los esquemas de MISO distribuido y los de MIMO colocalizado. Se estudian los potenciales casos de uso, los aspectos de implementación del transmisor y el receptor, y las ganancias de rendimiento de las configuraciones conjuntas para las dos capas de LDM. Las restricciones adicionales de combinar LDM con las tecnologías avanzadas se consideran admisibles, ya que las mayores demandas ya están contempladas en ATSC 3.0 (ej., una segunda cadena de recepción). Se obtienen ganancias significativas en condiciones de recepción peatonal gracias a la diversidad en frecuencia proporcionada por las tecnologías MultiRF. La conjunción de LDM con esquemas de MISO proporciona ganancias de rendimiento significativas en redes SFN para la capa fija con el esquema de Alamouti.Since the beginning of the 21st century, terrestrial broadcasting systems have been blamed of an inefficient use of the allocated spectrum. To increase the spectral efficiency, digital television Standards Developing Organizations settled to develop the technical evolution of the first-generation DTT systems. Among others, a primary goal of next-generation DTT systems (DVB-T2 and ATSC 3.0) is to simultaneously provide TV services to mobile and fixed devices. The major drawback of this simultaneous delivery is the different requirement of each reception condition. To address these constraints different multiplexing techniques have been considered. While DVB-T2 fulfilled the simultaneous delivery of the two services by TDM, ATSC 3.0 adopted the LDM technology. LDM can outperform TDM and FDM by taking advantage of the UEP ratio, as both services, namely layers, utilize all the frequency and time resources with different power levels. At receiver side, two implementations are distinguished, according to the intended layer. Mobile receivers are only intended to obtain the upper layer, known as CL. In order not to increase their complexity compared to single layer receivers, the lower layer, known as EL is treated as an additional noise on the CL decoding. Fixed receivers, increase their complexity, as they should performed a SIC process on the CL for getting the EL. To limit the additional complexity of fixed receivers, the LDM layers in ATSC 3.0 are configured with different error correction capabilities, but share the rest of physical layer parameters, including the TIL, the PP, the FFT size, and the GI. This dissertation investigates advanced technologies to optimize the LDM performance. A demapping optimization for the two LDM layers is first proposed. A capacity increase is achieved by the proposed algorithm, which takes into account the underlying layer shape in the demapping process. Nevertheless, the number of Euclidean distances to be computed can be significantly increased, contributing to not only more complex fixed receivers, but also more complex mobile receivers. Next, the most suitable ATSC 3.0 pilot configuration for LDM is determined. Considering the two layers share the same PP a trade-off between pilot density (CL) and data overhead (EL) arises. From the performance results, it is recommended the use of a not very dense PP, as they have been already designed to cope with long echoes and high speeds. The optimum pilot amplitude depends on the channel estimator at receivers (e.g. the minimum amplitude is recommended for a Wiener implementation, while the maximum for a FFT implementation). The potential combination of LDM with three advanced technologies that have been adopted in ATSC 3.0 is also investigated: MultiRF technologies, distributed MISO schemes, and co-located MIMO schemes. The potential use cases, the transmitter and receiver implementations, and the performance gains of the joint configurations are studied for the two LDM layers. The additional constraints of combining LDM with the advanced technologies is considered admissible, as the greatest demands (e.g. a second receiving chain) are already contemplated in ATSC 3.0. Significant gains are found for the mobile layer at pedestrian reception conditions thanks to the frequency diversity provided by MultiRF technologies. The conjunction of LDM with distributed MISO schemes provides significant performance gains on SFNs for the fixed layer with Alamouti scheme. Last, considering the complexity in the mobile receivers and the CL performance, the recommended joint configuration is MISO in the CL and MIMO in the EL.Des de començaments del segle XXI, els sistemes de radiodifusió terrestre han sigut culpats d'un ús ineficient de l'espectre assignat. Per a augmentar l'eficiència espectral, els organismes d'estandardització de TV digital van començar a desenvolupar l'evolució tècnica dels sistemes de TDT de primera generació. Entre altres, un dels objectius principals dels sistemes de TDT de pròxima generació (DVB-T2 i el ATSC 3.0) és proporcionar simultàniament serveis de TV a dispositius mòbils i fixos. El principal inconvenient d'aquest lliurament simultani són els diferents requisits de cada condició de recepció. Per a abordar aquestes limitacions, s'han considerat diferents tècniques de multiplexació. Mentre que DVB-T2 escomet el lliurament simultani dels dos serveis mitjançant TDM, ATSC 3.0 va adoptar la Multiplexació per Divisió en Capes (LDM). LDM pot superar a TDM i a FDM en aprofitar la relació de Protecció d'Error Desigual (UEP), ja que tots dos serveis, cridats capes, utilitzen tots els recursos de freqüència i temps amb diferents nivells de potència. En el costat del receptor, es distingeixen dues implementacions, d'acord amb la capa a decodificar. Els receptors mòbils solament estan destinats a obtenir la capa superior, coneguda com Core Layer (CL). Per a no augmentar la seua complexitat en comparació amb els receptors de capa única, la capa inferior, coneguda com Enhanced Layer (EL), és tractada com un soroll addicional en la decodificació. Els receptors fixos augmenten la seua complexitat, ja que han de realitzar un procés de Cancel·lació d'Interferència (SIC) sobre la CL per a obtenir l'EL. Per a limitar la complexitat addicional dels receptors fixos, les capes de LDM en ATSC 3.0 estan configurades amb diferents capacitats de correcció, però comparteixen la resta de blocs de la capa física, inclòs el TIL, el PP, la grandària de FFT i el GI. Aquesta dissertació investiga tecnologies avançades per a optimitzar el rendiment de LDM. Primer es proposa una optimització del procés de demapeo per a les dues capes de LDM. L'algoritme proposat aconsegueix un augment de capacitat, en tenir en compte la forma de l'EL en el procés de demapeo de la CL. No obstant açò, el nombre de distàncies Euclidianes a computar pot augmentar significativament, conduint NO sols a receptors fixos més complexos, sinó també a receptors mòbils més complexos. A continuació, es determina la configuració de pilot ATSC 3.0 més adequada per a LDM. Tenint en compte que les dues capes comparteixen el mateix PP, es produeix una contrapartida entre la densitat de pilots (CL) i la redundància sobre les dades (EL). A partir dels resultats de rendiment, es recomana l'ús d'un PP no gaire dens, ja que ja han sigut dissenyats per a fer front a ecos llargs i altes velocitats. L'amplitud pilot òptima depèn de l'estimador de canal en els receptors (ex., es recomana l'amplitud mínima per a una implementació Wiener, mentre que la màxima per a una implementació FFT). També s'investiga la potencial transmissió conjunta de LDM amb tres tecnologies avançades adoptades en ATSC 3.0: les tecnologies d'agregació de MultiRF, els esquemes de MISO distribuït i els de MIMO colocalitzat. S'estudien els potencials casos d'ús, els principals aspectes d'implementació del transmissor i el receptor, i els guanys de rendiment de les configuracions conjuntes per a les dues capes de LDM. Les restriccions addicionals de combinar LDM amb les tecnologies avançades es consideren admissibles, ja que les majors demandes ja estan contemplades en ATSC 3.0 (ex., una segona cadena de recepció). S'obtenen guanys significatius per a la capa mòbil en condicions de recepció per als vianants gràcies a la diversitat en freqüència proporcionada per les tecnologies MultiRF. La conjunció de LDM amb esquemes MISO distribuïts proporciona guanys de rendiment significatius en xarxes SFN per a la capa fixa amb l'esquema d'Alamouti.Garro Crevillén, E. (2018). Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/105559TESISCompendi
    corecore