127 research outputs found

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Multi-user Linear Precoding for Multi-polarized Massive MIMO System under Imperfect CSIT

    Get PDF
    The space limitation and the channel acquisition prevent Massive MIMO from being easily deployed in a practical setup. Motivated by current deployments of LTE-Advanced, the use of multi-polarized antennas can be an efficient solution to address the space constraint. Furthermore, the dual-structured precoding, in which a preprocessing based on the spatial correlation and a subsequent linear precoding based on the short-term channel state information at the transmitter (CSIT) are concatenated, can reduce the feedback overhead efficiently. By grouping and preprocessing spatially correlated mobile stations (MSs), the dimension of the precoding signal space is reduced and the corresponding short-term CSIT dimension is reduced. In this paper, to reduce the feedback overhead further, we propose a dual-structured multi-user linear precoding, in which the subgrouping method based on co-polarization is additionally applied to the spatially grouped MSs in the preprocessing stage. Furthermore, under imperfect CSIT, the proposed scheme is asymptotically analyzed based on random matrix theory. By investigating the behavior of the asymptotic performance, we also propose a new dual-structured precoding in which the precoding mode is switched between two dual-structured precoding strategies with 1) the preprocessing based only on the spatial correlation and 2) the preprocessing based on both the spatial correlation and polarization. Finally, we extend it to 3D dual-structured precoding.Comment: accepted to IEEE Transactions on Wireless Communication

    Autonomous Algorithms for Centralized and Distributed Interference Coordination: A Virtual Layer Based Approach

    Get PDF
    Interference mitigation techniques are essential for improving the performance of interference limited wireless networks. In this paper, we introduce novel interference mitigation schemes for wireless cellular networks with space division multiple access (SDMA). The schemes are based on a virtual layer that captures and simplifies the complicated interference situation in the network and that is used for power control. We show how optimization in this virtual layer generates gradually adapting power control settings that lead to autonomous interference minimization. Thereby, the granularity of control ranges from controlling frequency sub-band power via controlling the power on a per-beam basis, to a granularity of only enforcing average power constraints per beam. In conjunction with suitable short-term scheduling, our algorithms gradually steer the network towards a higher utility. We use extensive system-level simulations to compare three distributed algorithms and evaluate their applicability for different user mobility assumptions. In particular, it turns out that larger gains can be achieved by imposing average power constraints and allowing opportunistic scheduling instantaneously, rather than controlling the power in a strict way. Furthermore, we introduce a centralized algorithm, which directly solves the underlying optimization and shows fast convergence, as a performance benchmark for the distributed solutions. Moreover, we investigate the deviation from global optimality by comparing to a branch-and-bound-based solution.Comment: revised versio

    Precoder Design for Physical Layer Multicasting

    Full text link
    This paper studies the instantaneous rate maximization and the weighted sum delay minimization problems over a K-user multicast channel, where multiple antennas are available at the transmitter as well as at all the receivers. Motivated by the degree of freedom optimality and the simplicity offered by linear precoding schemes, we consider the design of linear precoders using the aforementioned two criteria. We first consider the scenario wherein the linear precoder can be any complex-valued matrix subject to rank and power constraints. We propose cyclic alternating ascent based precoder design algorithms and establish their convergence to respective stationary points. Simulation results reveal that our proposed algorithms considerably outperform known competing solutions. We then consider a scenario in which the linear precoder can be formed by selecting and concatenating precoders from a given finite codebook of precoding matrices, subject to rank and power constraints. We show that under this scenario, the instantaneous rate maximization problem is equivalent to a robust submodular maximization problem which is strongly NP hard. We propose a deterministic approximation algorithm and show that it yields a bicriteria approximation. For the weighted sum delay minimization problem we propose a simple deterministic greedy algorithm, which at each step entails approximately maximizing a submodular set function subject to multiple knapsack constraints, and establish its performance guarantee.Comment: 37 pages, 8 figures, submitted to IEEE Trans. Signal Pro

    Robust Transmission in Downlink Multiuser MISO Systems: A Rate-Splitting Approach

    Get PDF
    We consider a downlink multiuser MISO system with bounded errors in the Channel State Information at the Transmitter (CSIT). We first look at the robust design problem of achieving max-min fairness amongst users (in the worst-case sense). Contrary to the conventional approach adopted in literature, we propose a rather unorthodox design based on a Rate-Splitting (RS) strategy. Each user's message is split into two parts, a common part and a private part. All common parts are packed into one super common message encoded using a public codebook, while private parts are independently encoded. The resulting symbol streams are linearly precoded and simultaneously transmitted, and each receiver retrieves its intended message by decoding both the common stream and its corresponding private stream. For CSIT uncertainty regions that scale with SNR (e.g. by scaling the number of feedback bits), we prove that a RS-based design achieves higher max-min (symmetric) Degrees of Freedom (DoF) compared to conventional designs (NoRS). For the special case of non-scaling CSIT (e.g. fixed number of feedback bits), and contrary to NoRS, RS can achieve a non-saturating max-min rate. We propose a robust algorithm based on the cutting-set method coupled with the Weighted Minimum Mean Square Error (WMMSE) approach, and we demonstrate its performance gains over state-of-the art designs. Finally, we extend the RS strategy to address the Quality of Service (QoS) constrained power minimization problem, and we demonstrate significant gains over NoRS-based designs.Comment: Accepted for publication in IEEE Transactions on Signal Processin

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN
    corecore