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Robust Transmission in Downlink Multiuser MISO
Systems: A Rate-Splitting Approach
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Abstract—We consider a downlink multiuser MISO system
with bounded errors in the Channel State Information at the
Transmitter (CSIT). We first look at the robust design problem
of achieving max-min fairness amongst users (in the worst-
case sense). Contrary to the conventional approach adopted in
literature, we propose a rather unorthodox design based on a
Rate-Splitting (RS) strategy. Each user’s message is split into
two parts, a common part and a private part. All common
parts are packed into one super common message encoded
using a public codebook, while private parts are independently
encoded. The resulting symbol streams are linearly precoded
and simultaneously transmitted, and each receiver retrieves its
intended message by decoding both the common stream and
its corresponding private stream. For CSIT uncertainty regions
that scale with SNR (e.g. by scaling the number of feedback
bits), we prove that a RS-based design achieves higher max-min
(symmetric) Degrees of Freedom (DoF) compared to conventional
designs (NoRS). For the special case of non-scaling CSIT (e.g.
fixed number of feedback bits), and contrary to NoRS, RS can
achieve a non-saturating max-min rate. We propose a robust
algorithm based on the cutting-set method coupled with the
Weighted Minimum Mean Square Error (WMMSE) approach,
and we demonstrate its performance gains over state-of-the art
designs. Finally, we extend the RS strategy to address the Quality
of Service (QoS) constrained power minimization problem, and
we demonstrate significant gains over NoRS-based designs.

Index Terms—MISO-BC, degrees of freedom, linear precoding,
max-min fairness, quality-of-service, robust optimization.

I. INTRODUCTION

Consider a Multiuser (MU) Multiple-Input-Single-Output
(MISO) system operating in Downlink (DL), where a Base
Station (BS) equipped with an antenna array sends indepen-
dent messages to a number of single-antenna receivers. In such
systems, it is necessary to perform preprocessing at the BS to
mitigate the channel interference and realize the high spectral
efficiencies promised by employing multiple antennas/users
[2]. Among the different preprocessing techniques, linear pre-
coding (or beamforming) strategies have emerged as the most
popular choices due to the tractability of the corresponding
design problems. Two typical design problems are:
• Maximizing the minimum Quality of Service (QoS)

among users subject to a total transmit power constraint.
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• Transmit power minimization subject to QoS constraints.
The former is known as the max-min fairness problem (or
balancing problem), while the latter is known as the QoS
problem. The two problems are closely related: there is an
inverse relation between the two when all users request the
same QoS in the second problem. In the presence of perfect
Channel State Information (CSI), it has been shown that
the two problems assume Signal to Interference plus Noise
Ratio (SINR) formulations, and can be solved globally and
efficiently using means of conic programming [3], [4].

In practical systems, the CSI at the Transmitter (CSIT) is
subject to various sources of imperfection, such as estimation
errors in Time Division Duplex (TDD) systems [5], and quan-
tization errors in Frequency Division Duplex (FDD) systems
[6]. Both cases are prone to delays and mismatches arising
from using outdated CSIT. Such imperfections are known to
be detrimental to the performance of naive designs that assume
perfect CSIT [7]–[9]. This motivated a wide range of robust
designs which aim to guarantee a certain performance under
CSIT imperfections [10]–[17]. The formulation of the robust
optimization problem is heavily influenced by the adopted
error model. In this work, we consider the case where CSIT
errors are confined within some known bounded uncertainty
sets. This is typical in scenarios where errors emerge as a result
of quantization and limited channel feedback. Knowledge
of the quantization codebooks can be used to bound such
errors. This model can also be applied to control the outage
probability for unbounded estimation errors [17].

Robust optimization is carried out in the worst-case sense
[18], where precoders are designed such that a certain per-
formance is guaranteed for all possible channels in the cor-
responding uncertainty regions. The robust fairness and QoS
problems are non-convex in general with infinitely many
constraints, and usually very difficult to solve in their raw
forms. To overcome these difficulties, several approximations
have been proposed to transform the problems into tractable
forms [10]–[15]. The different approaches vary in the degree
of conservatism and computational complexity. However, all
existing works consider a conventional transmission scheme,
i.e. each message is encoded into an independent data stream,
then all streams are spatially multiplexed through linear pre-
coding. Optimum max-min fair designs ultimately achieve
balanced rates, requiring a simultaneous increase in users’
powers. This is known to limit the performance under CSIT
errors that do not decay with increased Signal to Noise Ratio
(SNR), e.g. fixed number of feedback bits [7]. Rates saturate
at high SNRs where MU interference becomes dominant, and
cannot be completely dealt with due to CSIT imperfection.
While robust designs enhance the performance, the inherent
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interference cannot be eliminated, and the rate saturates as
observed in [14]. Conversely, this creates a feasibility issue
for the power minimization problem, since rates beyond the
saturation level cannot be achieved. We primarily focus on the
max-min fairness problem through this work, before extending
the developed methods to the QoS problem.

To overcome the limitations of conventional designs, we
propose a novel robust strategy based on Rate-Splitting (RS).
A given message is split into two parts: a common part and
a private part. All common parts are packed into one super
common message, encoded into a codeword drawn from a
common codebook shared by all users. The private part is
encoded using a private codebook, known to the corresponding
user. For a K-user system, the resulting K+1 encoded streams
are linearly precoded and simultaneously transmitted. At each
receiver, the common message is decoded first by treating
all private signals as noise. This is followed by decoding
the private message after removing the common message
via Successive Interference Cancellation (SIC). The original
messages are delivered given that each receiver decodes the
common message and its private message successfully.

The idea of RS dates back to Carleial’s work on the
Interference Channel (IC), then later appears in the famous
Han-Kobayashi scheme, where it was shown that decoding
part of the interference (in the form of common messages)
enhances the performance [19]. The inherent MU interference
in the MISO Broadcast Channel (BC) with imperfect CSIT
draws a strong resemblance to the IC, one that has been
generally overlooked until recently. It was shown in [20] that
RS boosts the sum Degrees of Freedom (DoF) of the MISO-
BC under imperfect CSIT, where errors decay with increased
SNR at a rate of O(SNR−α) for some constant α ∈ [0, 1] (see
also [21]). Building upon this result, the sum-rate performance
in the context of limited channel feedback using basic closed-
form precoders is analysed in [22], where RS is shown to
outperform conventional transmission without rate-splitting
(NoRS). Maximizing the sum-rate performance of the RS
scheme through precoder optimization was considered in [23],
[24]. RS was also extended to FDD massive MIMO systems
in [25]. From a design perspective, sum-rate (or sum-DoF)
maximization in the aforementioned works is achieved by
splitting any of the messages. The RS sum-rate question is
posed as whether splitting is required or not, and in case the
answer is positive, how much of the total information should
be relayed by the common message, regardless of which user
message(s) is split. This does not take into account individual
rates and fairness amongst users.

Generalizing the RS scheme such that the common stream
is shared between users to achieve fairness was introduced
in our previous works [24], [26], where average rates were
optimized under statistical CSIT uncertainty. A key feature that
differentiates the RS max-min fairness design problem from its
NoRS counterpart is the sum-rate nature of each user’s achiev-
able rate arising from splitting the messages. The non-convex
coupled sum-rate expressions motivate invoking the Weighted
Minimum Mean Square Error (WMMSE) approach in [27],
[28]. This unveils a block-wise convex structure that can be
exploited using the Alternating Optimization (AO) principle.

However, the sampling-based method used to approximate the
average rates in [24], [26] cannot be applied to the worst-case
formulation with infinitely many constraints considered here.
In a preliminary version of this paper [1], we resort to the
robust WMMSE algorithm proposed in [29]. This approach
first applies a conservative approximation, which then enables
the abstraction of the infinitely many constraints into a finite
number of linear matrix inequalities, using the S-lemma based
result in [30] (also used in [11], [12]). Nevertheless, it was
observed in [1] and [29] that this approach fails to achieve the
theoretically predicted DoF, which calls for an algorithm that
can achieve the anticipated performance. Before we proceed,
we emphasize that for the K-user system considered in this
work, the kth user’s CSIT uncertainty region is modeled as a
ball of radius δk. To incorporate scenarios where CSIT errors
decay with increased SNR [31], e.g. by scaling the number
of feedback bits [7], we allow δ2

k to scale as O(SNR−αk) for
some CSIT scaling (or quality) factor αk ∈ [0, 1]. Without loss
of generality, we assume that α1 ≤ α2 ≤ . . . ≤ αK . Next, the
key contributions of this paper are listed:
• We characterize the optimum performances of NoRS and

RS max-min fairness designs in the interference limited
regime by deriving their optimum max-min DoFs1 shown
to be d̄∗ = α1+α2

2 and d̄∗RS = min
J∈{2,...,K}

1+
∑J−1

k=1 αk

J

respectively. This gives insight into the RS performance
gains, e.g. d̄∗ = 0 under α1, α2 = 0 yielding a saturat-
ing NoRS rate, while RS achieves non-saturating rates
regardless of the CSIT scaling as d̄∗RS ≥ 1

K .
• We derive a performance upper-bound for the conser-

vative robust WMMSE approach [1], [29] from which
its behavior is explained. We show that the employed
approximation introduces self-interference terms that un-
dermine the worst-case achievable rates, as perceived and
guaranteed by the BS, specifically at high SNRs. Such
limitations were not identified previously.

• We propose an algorithm based on the cutting-set method
[32], which solves the problem by alternating between
an optimization step: where a solution is obtained w.r.t a
finite subset of the uncertainty region, and a pessimization
step: where the subset is updated through worst-case
analysis. Contrary to works adopting this method [10],
[33]–[35], we avoid conservative approximations used to
convexify the optimization step, and we solve the pes-
simization step exactly, and hence guarantee convergence
to a robust solution of the original semi-infinite problem.
We further prove the KKT optimality of the solution.

• We show through simulations that for a given trans-
mission scheme (RS or NoRS), the proposed cutting-set
method is superior to the conservative method of [29].
On the other hand, for a given robust design method, RS
provides significant performance gains over NoRS.

• Finally, we formulate a RS version of the QoS problem
and show that the proposed algorithm resolves the fea-
sibility issue arising in NoRS designs, and requires less
transmission power to meet the same QoS constraints.

1This is also known as the symmetric DoF in litrature [20], i.e. the DoF
that can be achieved by all users simultaneously.
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The rest of the paper is organized as follows. The system
model is described in Section II. The problem is formulated in
Section III, where the asymptotic performance is also derived.
The conservative robust WMMSE approach and its limitations
are discussed in Section IV. In Section V, we propose the
cutting-set method and establish its convergence to a KKT
point. Simulations results, analysis and the QoS problem are
presented in Section VI, and Section VII concludes the paper.

Notation: Boldface uppercase, boldface lowercase and stan-
dard letters denote matrices, column vectors, and scalars, re-
spectively. The superscrips (·)T , (·)H and (·)† denote the trans-
pose, conjugate-transpose (Hermitian), and pseudo-inverse op-
erators, respectively. tr(·), ‖·‖ and E{·} are the trace, Euclidian
norm, and expectation operators, respectively. A � 0 means
that the symmetric matrix A is positive semidefinite.

II. SYSTEM MODEL

Consider a BS equipped with Nt antennas serving a set of
single-antenna users K , {1, . . . ,K}, where K ≤ Nt. For a
standard linear channel model, the signal received by the kth
user in a given channel use is written as

yk = hHk x + nk (1)

where hk ∈ CNt is the channel vector from the BS to the kth
user, x ∈ CNt is the transmit signal, and nk ∼ CN (0, σ2

n,k) is
the Additive White Gaussian Noise (AWGN) at the receiver.
The transmit signal is subject to an average power constraint
E{xHx} ≤ Pt. Without loss of generality, we assume equal
noise variances across users, i.e. σ2

n,k = σ2
n. Therefore, the

transmit SNR is defined as SNR , Pt/σ
2
n. Moreover, σ2

n is
non-zero and remains fixed over the entire SNR range. Hence,
SNR→∞ is equivalent to Pt →∞.

The BS wishes to communicate K independent mes-
sages Wt,1, . . . ,Wt,K uniformly drawn from the sets
Wt,1, . . . ,Wt,K , and intended for receivers 1, . . . ,K respec-
tively. A RS scheme is considered where the message of
each user is split into a private part and a common part,
i.e. Wt,k = {Wk,Wc,k}2 with Wk ∈ Wk, Wc,k ∈ Wc,k,
and Wk × Wc,k = Wt,k. A super message (known as the
common message) is composed by packing the common parts
such that Wc = {Wc,1, . . . ,Wc,K} ∈ Wc,1× . . .×Wc,K . The
resulting K + 1 messages are encoded into the independent
data streams sc, s1, . . . , sK , where sc and sk are encoded
common and private symbols in an arbitrary channel use. The
K+1 symbols of a given channel use are grouped in a vector
s , [sc, s1, . . . , sK ]T ∈ CK+1, where E{ssH} = I.

Symbols are mapped to the BS antennas through a linear
precoding matrix defined as P , [pc,p1, . . . ,pK ], where
pc ∈ CNt is the common precoder, and pk ∈ CNt is the kth
private precoder. This yields a transmit signal which writes as

x = Ps = pcsc +

K∑
k=1

pksk (2)

2The subscript t denotes ”total”, which indicates that Wt,k is generally
composed of two parts. The subscript p is omitted for private parts as they
resemble conventional transmission (NoRS).

where the common signal is superimposed on top of the private
signals. The power constraint is rewritten as tr

(
PPH

)
≤ Pt.

The kth user’s average receive power is written as

Tc,k =

Sc,k︷ ︸︸ ︷
|hHk pc|2 +

Sk︷ ︸︸ ︷
|hHk pk|2 +

Ik︷ ︸︸ ︷∑
i6=k

|hHk pi|2 + σ2
n︸ ︷︷ ︸

Ic,k=Tk

. (3)

To recover its message, each receiver carries out multi-stream
detection of both the common stream and its designated private
stream. The common stream is decoded first by treating all
other streams as noise. Given that the common message is
successfully recovered, the common signal is removed from
yk using SIC in order to improve the detectability of the private
stream, which is then decoded in the presence of the remaining
interference. The corresponding output SINRs of the common
stream and the private stream at the kth receiver write as

γc,k , Sc,kI
−1
c,k and γk , SkI

−1
k . (4)

Under Gaussian signalling, the corresponding achievable rates
in bits per channel use are given as

Rc,k = log2(1 + γc,k) and Rk = log2(1 + γk). (5)

To ensure that Wc is decodable by all users, it should be trans-
mitted at the common rate defined as Rc , minl{Rc,l}Kl=1.
Following the RS structure described earlier, the common
rate is split into K portions, namely C1, . . . , CK where∑K
k=1 Ck = Rc. Note that Ck corresponds to the achievable

rate of the common part of the kth user’s message, i.e. Wc,k.
Hence, the kth user achieves a total rate of Rt,k , Rk + Ck.

III. PROBLEM STATEMENT AND ASYMPTOTIC
PERFORMANCE

For each channel vector hk, the BS obtains an erroneous
estimate ĥk, from which the error unknown to the BS is
given as h̃k , hk − ĥk. As far as the BS is aware, h̃k
is bounded by an origin-centered sphere with radius δk,
from which hk is confined within the uncertainty region
Hk ,

{
hk | hk = ĥk + h̃k, ‖h̃k‖ ≤ δk

}
. This CSIT uncer-

tainty model is highly relevant in limited feedback systems,
where each receiver estimates its channel vector through
downlink training and then sends back a quantized version
to the BS [6]–[9]. The resulting quantization errors fall within
a closed and bounded region which may either be a closed
ball, or is fully contained within one. We should highlight
that we assume perfect Receiver CSI (CSIR) throughout this
work. This assumption is justified as it can be shown that under
proper downlink training, the effects of estimation errors are
at the same power level of additive noise, and are completely
overwhelmed by the influence of feedback errors [9].

Due to the CSIT uncertainty, the actual rates cannot be
considered as design metrics at the BS. From the BS’s point of
view, achievable rates also lie in bounded uncertainty regions.
We consider a robust design where precoders are optimized
w.r.t the worst-case achievable rates. The kth user’s worst-case
achievable rates are defined as

R̄c,k , min
hk∈Hk

Rc,k(hk) and R̄k , min
hk∈Hk

Rk(hk) (6)
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where the dependencies of the rates on hk are high-
lighted. The worst-case achievable common rate is defined
as R̄c , minl{R̄c,l}Kl=1. Transmitting Wc,W1, . . . ,WK at
rates R̄c, R̄1, . . . , R̄K respectively, guarantees successful de-
coding at the receivers for all admissible channels within the
uncertainty regions. Given some splitting ratios, the kth user’s
portion of the worst-case common rate is denoted by C̄k where∑K
k=1 C̄k = R̄c. Therefore, the kth user’s worst-case total

achievable rate is given as R̄t,k , R̄k + C̄k, corresponding to
the worst-case transmission rate of the original message Wt,k.

A. Max-Min Fairness Optimization Problem

The robust optimization problem of achieving max-min
fairness using the RS transmission strategy is posed as

RRS(Pt) :



max
R̄t,c̄,P

R̄t

s.t. R̄k + C̄k ≥ R̄t, ∀k ∈ K
R̄c,k ≥

∑K
l=1 C̄l, ∀k ∈ K

C̄k ≥ 0, ∀k ∈ K
tr
(
PPH

)
≤ Pt

(7)

where R̄t is an auxiliary variable and c̄ , [C̄1, . . . , C̄K ]T . The
pointwise minimizations in the original objective function is
replaced with the inequality constraints in (7). For example,
R̄k + C̄k ≥ R̄t guarantees fairness, while R̄c,k ≥

∑K
l=1 C̄l

guarantees that the common message is decoded by the kth
user. The constraint C̄k ≥ 0 however is to guarantee the non-
negativity of the common rate portions.

In contrast, the NoRS version of the problem is give by

R(Pt) :


max
R̄,Pp

R̄

s.t. R̄k ≥ R̄, ∀k ∈ K
tr
(
PpP

H
p

)
≤ Pt.

(8)

where R̄ is the rate auxiliary variable, and Pp , [p1, . . . ,pK ].
It is evident that solving (8) is equivalent to solving (7) over a
restricted domain characterized by setting c̄ = 0, which in turn
forces ‖pc‖2 to zero at optimality. As a result, we can write
RRS(Pt) ≥ R(Pt). Before proceeding to derive the optimum
performances, we adapt the concept of CSIT error scaling in
[7], [20]–[22], [31] to the bounded error model in this work.

B. CSIT Error Scaling

It is well established that CSIT uncertainties hinder the
performance of MU-MISO systems, as it may be impossible
to design precoding schemes that eliminate the received MU
interference or reduce it to the level of noise. Taking the
considered model as an example, the SINR of the private
stream given in (4) will have residual interference terms of
power

∑
i6=k | h̃Hk pi |2 (at least), scaling as δ2

k

∑
i 6=k ‖pi‖2 in

the worst-case sense (see Appendix A). For the NoRS problem
in (8), increasing the total transmit power Pt (or equivalently
the SNR) should be accompanied by a simultaneous increase
in all user powers, allocated solely to private streams in this
case, as otherwise users with fixed powers will experience
a degree of unfairness. Under fixed δ2

1 , . . . , δ
2
K which are

independent of Pt, residual interference becomes dominant as
‖p1‖2, . . . , ‖pK‖2 grow high w.r.t the noise level, yielding a
saturating rate performance at high SNRs.

This phenomenon was noted by Jindal in [7], where
Zero Forcing Beamforming (ZF-BF) under a Random Vec-
tor Quantization (RVQ) type of feedback was considered.
Jindal suggested improving the CSIT quality with the SNR
level through increasing the number of feedback bits. The
intuition behind this feedback scaling is simply explained
as follows: in the high SNR regime where performance is
interference limited, interference nulling is crucial to guarantee
non-saturating performance, which necessitates higher CSIT
accuracy, or equivalently, decaying CSIT errors. Incorporating
this concept into the considered error model yields uncertainty
regions that shrink with increased SNR given that the number
of feedback bits is scaled accordingly. Equivalently, we write
δ2
k = O(P−αk

t ), where αk ∈ [0,∞) is a constant exponent that
quantifies the CSIT quality (or scaling law) as SNR grows
large, i.e. αk , limPt→∞−

log(δ2k)
log(Pt)

. αk = 0 represents a
constant (or very slowly scaling) number of feedback bits,
yielding a non-shrinking (fixed) uncertainty region. On the
other hand, αk = ∞ corresponds to perfect CSIT resulting
from an infinitely high number of feedback bits. In the
following, the exponents are truncated such that αk ∈ [0, 1].
This is customary in asymptotic rate analysis as αk = 1
corresponds to perfect CSIT in the DoF sense [7], [20], [31].
This can be shown by noting that the worst-case residual
interference would scale as O(P 0

t ) at most, and hence has a
similar effect to additive noise. Without loss of generality, we
assume that the qualities are ordered as α1 ≤ α2 ≤ . . . ≤ αK .

C. DoF Analysis

Due to the crucial role of MU interference and its hindering
influence in the presence of CSIT uncertainty, the performance
is characterized in terms of the DoF: a first order approxima-
tion of the achievable rate in the high SNR regime, roughly
interpreted as the number of interference-free streams that can
be simultaneously communicated in a single channel use. To
facilitate this analysis, we define a precoding scheme for (7)
as a family of feasible precoders with one precoding matrix
for each SNR level, i.e.

{
P(Pt)

}
Pt

. The associated powers
allocated to the precoding vectors are defined as qc , ‖pc‖2
and qk , ‖pk‖2, which are assumed to scale as O(P act )
and O(P akt ) respectively, where ac, ak ∈ [0, 1] are some
scaling exponents. For a given precoding scheme, the worst-
case achievable DoFs write as

d̄c , lim
Pt→∞

R̄c(Pt)

log2(Pt)
and d̄k , lim

Pt→∞

R̄k(Pt)

log2(Pt)
(9)

where dependencies on the power level are highlighted in
(9). The portion of d̄c allocated to the kth user is given
by c̄k , limPt→∞

C̄k(Pt)
log2(Pt)

, where
∑K
k=1 c̄k = d̄c. In the

following, the worst-case DoF is simply referred to as the DoF
for brevity. All definitions extend to the NoRS case where the
common part is discarded, and a precoding scheme for (8)
writes as

{
Pp(Pt)

}
Pt

. As each receiver is equipped with a
single antenna, it can decode one interference free stream at



5

most, from which we have d̄c ≤ 1, d̄k ≤ 1 and d̄c + d̄k ≤ 1.
The optimum max-min DoF is derived under the following
assumption regarding the condition of the channel.

Assumption 1. Although the channel estimates and errors
may depend on SNR, the actual channel vectors h1, . . . ,hK
do not, and their entries are assumed to have absolute values
bounded away from zero and infinity. Moreover, the channel
estimate matrix Ĥ ,

[
ĥ1, . . . , ĥK

]
is of full column rank.

When the entries of the actual channel are drawn from
continuous unbounded distributions, the assumption can be
made by reducing the probability measure of the omitted
neighborhoods to an arbitrary small value with no impact
on the DoF [31]. On the other hand, the second part can be
guaranteed in a feedback system by prohibiting the scheduling
of users with similar quantized channel vectors in the same
time-frequency slot. However, it should be noted that while
the second part of Assumption 1 is required for the proof of
the following result, it is not necessary for the optimization
solutions in the following sections, as problems (7) and (8) can
still be solved under linearly dependent channel estimates.

Theorem 1. For the NoRS problem defined in (8), the
optimum max-min DoF is given by

d̄∗ , lim
Pt→∞

R(Pt)

log(Pt)
=
α1 + α2

2
. (10)

The RS problem in (7) yields an optimum max-min DoF of

d̄∗RS , lim
Pt→∞

RRS(Pt)

log(Pt)
= min
J∈{2,...,K}

1 +
∑J−1
k=1 αk
J

. (11)

The results are obtained through two steps. First, we show
that the max-min DoFs are upper-bounded by (10) and (11),
then we show that the upper-bounds are achievable via feasible
precoding schemes. The full proof is relegated to Appendix
A. In the following discussion, we provide some insight
into Theorem 1 and its implications. (10) shows that the
NoRS optimum max-min DoF is determined by the worst two
CSIT scaling factors. This is explained through the following
example. Consider that all receivers are switched off except for
user-1 and user-2. A simultaneous and proportional increase
in powers allocated to the two users combined with a proper
design of precoders achieves d̄1 = α1 and d̄2 = α2 (see
Lemma 5). Compromising user-2’s DoF by reducing its power
scaling reduces the interference experienced by user-1, and
both users can achieve the DoF in (10). Moving back to the
K-user case by introducing users with possibly better CSIT
qualities does not improve the max-min DoF. In particular,
even if the new users can achieve higher DoF (ultimately 1),
the max-min DoF is limited by that of user-1 and user-2, i.e.
α1+α2

2 . Hence, the best they could do is achieve an equal
(or higher) DoF without influencing d̄1 and d̄2, which can be
shown to be possible given their better CSIT qualities.

Considering the same 2-user example under RS, allocating
private powers that scale as O

(
Pα1

t

)
and a common power that

scales as O
(
Pt

)
yields d̄1, d̄2 = α1 and d̄c = 1−α1 as shown

in Lemma 5. By Splitting d̄c evenly, each user obtains a total
DoF of 1+α1

2 . Increasing K may decrease this max-min DoF

as d̄c may be divided among a larger set of users, as reflected
by the minimization in (11). However, d̄∗RS > d̄∗ holds for
all α1, . . . , αK ∈ [0, 1), i.e. RS provides a strict improvement
over NoRS under imperfect CSIT in a DoF sense. Note that
the existence of two or more users with αk = 0 yields d̄∗ =
0. This results in a saturating max-min rate performance for
NoRS as observed in [7], [14]. On the contrary, d̄∗RS is lower-
bounded by d̄∗RS ≥ 1/K regardless of the CSIT scaling, and
hence achieves an ever-growing max-min rate.

In conclusion of this section, we highlight that while rate
optimality implies DoF optimality, the converse does not
hold in general. In particular, the optimum DoF performance
characterized in Theorem 1 can be achieved via suboptimal
precoders (in the rate sense) as seen in Appendix A. This
common observation has motivated a number of suboptimal
designs in the MIMO literature, e.g. the employment of the
rate-suboptimal yet DoF-optimum ZF-BF strategy [7], [31],
[36]. The implication of this remark is witnessed in Section VI,
where simulation results show that the (possibly) suboptimal
precoders designed in Section V achieve the optimum DoF.

IV. CONSERVATIVE APPROACH

The optimization problem in (7) is non-convex and semi-
infinite. Even a sampled instance of the problem with a
finite number of constraints is highly intractable in its current
form due to the non-convex coupled nature of the sum-rate
expressions embedded in each user’s achievable rate. We start
this section by introducing the WMMSE approach, initially
proposed in [27] and then further established in [28], [37] with
more rigorous convergence proofs. This approach is heavily
employed throughout this paper due to its effectiveness in
solving problems featuring sum-rate expressions.

A. Rate-WMMSE Relationship

Let ŝc,k = gc,kyk be the kth user’s estimate of sc ob-
tained by applying the scalar equalizer gc,k. Given that the
common message is successfully decoded and removed from
yk, the estimate of sk is obtained by applying gk such
that ŝk = gk(yk − hHk pcsc). The corresponding common
and private MSEs, defined as εc,k , E{|ŝc,k − sc|2} and
εk , E{|ŝk − sk|2} respectively, write as:

εc,k = |gc,k|2Tc,k − 2<
{
gc,kh

H
k pc

}
+ 1 (12a)

εk = |gk|2Tk − 2<
{
gkh

H
k pk

}
+ 1 (12b)

where Tk is defined in (3). Optimum equalizers are obtained
from ∂εc,k

∂gc,k
= 0 and ∂εk

∂gk
= 0. This yields the well-known

MMSE equalizers given by

gMMSE
c,k = pHc hkT

−1
c,k and gMMSE

k = pHk hkT
−1
k (13)

from which the MMSEs are obtained as

εMMSE
c,k , min

gc,k
εc,k = T−1

c,k Ic,k (14a)

εMMSE
k , min

gk
εk = T−1

k Ik. (14b)

Under optimum equalization, the SINRs in (4) relate to
the MMSEs such that γc,k =

(
1/εMMSE

c,k

)
− 1 and γk =
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(
1/εMMSE

k

)
− 1, from which the rates in (5) write as Rc,k =

− log2(εMMSE
c,k ) and Rk = − log2(εMMSE

k ).
By introducing positive weights (uc,k, uk), the kth user’s

common and private augmented WMSEs are defined as:

ξc,k , uc,kεc,k−log2(uc,k) and ξk , ukεk−log2(uk). (15)

In the following, ξc,k and ξk are referred to as the WMSEs
for brevity. Optimizing over the equalizers and weights, the
Rate-WMMSE relationship writes as:

ξMMSE
c,k , min

uc,k,gc,k
ξc,k = 1−Rc,k (16a)

ξMMSE
k , min

uk,gk
ξk = 1−Rk (16b)

where the optimum equalizers are given by: g∗c,k = gMMSE
c,k and

g∗k = gMMSE
k , and the optimum weights are given by: u∗c,k =

uMMSE
c,k ,

(
εMMSE

c,k

)−1
and u∗k = uMMSE

k ,
(
εMMSE
k

)−1
,

obtained by checking the first order optimality conditions. ξc,k
(resp. ξk) is convex in each of gc,k (resp. gk), uc,k (resp. uk),
and P, while fixing the two other variables. This variable-wise
convexity, preserved under sum-WMSE expressions, alongside
the relationship in (16) are key to solving non-convex opti-
mization problems with sum-rate expressions.

By incorporating the CSIT uncertainty into (16), the worst-
case rates can be equivalently expressed as

R̄c,k = 1− max
hk∈Hk

min
uc,k,gc,k

ξc,k
(
hk, gc,k, uc,k

)
(17a)

R̄k = 1− max
hk∈Hk

min
uk,gk

ξk
(
hk, gk, uk

)
. (17b)

Plugging (17)’s right-hand side expressions into (7) yields an
equivalent WMSE problem with an extended domain which
includes the equalizers and weights as optimization variables.
The equivalent problem inherits the virtue of WMSEs, har-
boring a block-wise convex structure, i.e. convex in each
block of variables while fixing the rest. Such structure can
be exploited to obtain a solution using the AO principle, also
known as the Block Coordinate Descent (BCD) method [38].
However, despite its desirable properties, the WMSE problem
is still deemed intractable due to its infinitely many variables
and constraints. This follows from the dependencies of the
optimum equalizers and weights on perfect CSI, which is
seen from (16) and noting that the maximizations are outside
the minimizations in (17). This hurdle is addressed through
a conservative approximation in this section, and a sampling-
based method in the following section.

B. Conservative Worst-Case Approximation

The infinite sets of variables are abstracted into finite sets by
leveraging the conservative approximation in [29]. We write

R̂c,k = 1− min
ûc,k,ĝc,k

max
hk∈Hk

ξc,k
(
hk, ĝc,k, ûc,k

)
(18a)

R̂k = 1− min
ûk,ĝk

max
hk∈Hk

ξk
(
hk, ĝk, ûk

)
(18b)

where R̂c,k ≤ R̄c,k and R̂k ≤ R̄k are lower-bounds on
the worst-case rates (see footnote 1 in [29, Section IV.B.2]),
and (ĝc,k, ĝk) and (ûc,k, ûk) are the abstracted equalizers and

weights. By swapping the order of the minimization (opti-
mization) and maximization (worst-case channel) as shown in
(18), the equalizers and weights loose their dependencies on
perfect CSI. Taking (18a) for example, the same (ûc,k, ĝc,k)
are employed for all realizations hk ∈ Hk. Plugging (18) into
problem (7) yields the conservative WMSE counterpart

R̂RS(Pt) :



max
R̂t,ĉ,P,ĝ,û

R̂t

s.t.
1−ξk

(
hk, ĝk, ûk

)
+Ĉk ≥ R̂t,∀hk ∈ Hk, k ∈ K

1− ξc,k
(
hk, ĝc,k, ûc,k

)
≥
∑K
l=1 Ĉl,∀hk ∈ Hk,

k ∈ K
Ĉk ≥ 0, ∀k ∈ K
tr
(
PPH

)
≤ Pt

(19)
where ĝ , {ĝc,k, ĝk | k ∈ K} and û , {ûc,k, ûk | k ∈ K}.
Since the WMSE constraints in (19) are decoupled in their
equalizer-weight pairs, each pair can be optimized separately
as formulated in (18). This is shown by noting that for an
instance of problem (19) with a given P, the optimum solution
of (18) maximizes all left-hand sides of the common rate
inequalities. This in turn yields a maximized

∑K
l=1 Ĉl on

the right-hand side of the inequalities. A similar argument is
made for private pairs and constraints, yielding a maximized
objective R̂t. The semi-infiniteness in (19) on the other hand is
eliminated by reformulating the infinite sets of constraints into
equivalent finite constraints with Linear Matrix Inequalities
(LMIs) using the result in [30], based on the S-lemma. The
kth user’s private rate constraints in (19) are rewritten as

ûk
(
τk + |ĝk|2σ2

n

)
− log2(ûk) ≤ 1 + Ĉk − R̂t (20a) τk − λk ψHk 0T

ψk I −δkPHp ĝHk
0 −δkĝkPp λkI

 � 0 (20b)

where ψHk , ĝkĥ
H
k Pp − eTk . Similarly, the common rate

constraints are expressed as

ûc,k

(
τc,k + |ĝc,k|2σ2

n

)
− log2(ûc,k) ≤ 1− R̂c (21a) τc,k − λc,k ψHc,k 0T

ψc,k I −δkPH ĝHc,k
0 −δkĝc,kP λc,kI

 � 0 (21b)

where ψHc,k , ĝc,kĥ
H
k P− eT1 . This is obtained by writing the

common and private MSEs as ‖ ĝc,kh
H
k P−eT1 ‖2 +|ĝc,k|2σ2

n

and ‖ ĝkhHk Pp − eTk ‖2 +|ĝk|2σ2
n respectively, followed by

applying the Schur Complement [39], and then the result in
[30, Proposition 2]. For a more detailed description of the
procedure, readers are referred to [11] and [29].

C. Alternating Optimization Algorithm

By invoking the inequalities in (20) and (21), problem
(19) is solved using the AO principle. First, ĝ is opti-
mized by solving the problems min

ĝc,k
max
hk∈Hk

εc,k

(
hk, ĝc,k

)
and

min
ĝk

max
hk∈Hk

εk
(
hk, ĝk

)
for all k ∈ K, written with objective

functions τc,k + |ĝc,k|2σ2
n and τk + |ĝk|2σ2

n respectively, and
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Algorithm 1 Conservative WMMSE Algorithm
1: Input: Pt

2: Initialize: n← 0, R̂(n)
t ← 0, P

3: repeat
4: n← n+ 1
5:

(
ĝc,k, ĝk

)
←
(

arg ε̂MMSE
c,k , arg ε̂MMSE

k

)
, ∀k ∈ K

6:
(
ûc,k, ûk

)
←
(
1/ε̂MMSE

c,k , 1/ε̂MMSE
k

)
, ∀k ∈ K

7: (R̂
(n)
t , ĉ,P)← arg R̂MMSE

RS (Pt, ĝ, û)

8: until
∣∣R̂(n)

t − R̂(n−1)
t

∣∣ < εR
9: Output: R̂t, ĉ and P

constraints given in (21b) and (20b) respectively3. Such prob-
lems are posed as Semidefinite Programs (SDPs)4 and can
be solved efficiently using interior-point methods [40]. The
resulting conservative MMSEs are denoted by ε̂MMSE

k and
ε̂MMSE

c,k . Next, the weights are updated as ûk = 1/ε̂MMSE
k and

ûc,k = 1/ε̂MMSE
c,k . Finally, (R̂t, ĉ,P) are updated by solving

problem R̂MMSE
RS (Pt, ĝ, û), formulated by plugging both (20)

and (21) into (19) and fixing (ĝ, û). R̂MMSE
RS (Pt, ĝ, û) is also

a SDP, solved by interior-point methods. This procedure is
repeated in an iterative manner as described in Algorithm 1.

Algorithm 1 is guaranteed to converge since the objective
function is bounded for a given power constraint, and increases
monotonically at each iteration. The conservative approxima-
tions guarantee that the solution obtained from Algorithm
1 is feasible for the original problem, i.e. (7). However,
global optimality (w.r.t the conservative problem) cannot be
guaranteed due to non-convexity. Despite sub-optimality, such
algorithm was shown to achieve good performances [1], [29].

D. Conservative Approach Limitations

In our preliminary work [1], we observed that the conser-
vative max-min rate performance obtained from Algorithm 1
may not coincide with the optimum DoF. In particular, the RS
scheme exhibits a saturating rate behaviour for non-scaling
CSIT qualities. Similar behavior was reported in [29] in the
context of multi-cell transmission where the rate saturates,
contradicting the DoF result. The authors of [29] regarded
the saturation to the suboptimality of the AO technique. We
show that this behaviour is due to self-interference introduced
by the approximation in (18), preceding the AO procedure.

It is well understood that the worst-case approach adopted
in this paper does not give any consideration to the statistical
distribution of the CSIT errors. To facilitate the calculation
of upper-bounds on the conservative worst-case rates in (18),
let us assume that h̃k is drawn from an arbitrary zero-mean
isotropic distribution defined over an origin-centered ball with
radius δk. Hence, E

{
h̃k
}

= 0 and E
{
h̃kh̃

H
k

}
= σ2

e,kI. For
CSIT that scales with SNR, σ2

e,k scales as O(P−αk
t ), which

follows from σ2
e,k = E

{
‖h̃k‖2

}
/Nt and ‖h̃k‖2 = O(δ2

k).
Note that the isotropic assumption is made for the sake of the
following worst-case analysis, and does not restrict the actual
CSIT errors to such distributions, as they may assume non-
isotropic distributions confined within the uncertainty region.

3Reduced to minimizing the worst-case MSEs as weights are fixed.
4|ĝc,k|2 and |ĝk|2 can be expressed as LMIs using the Schur Complement.

For a given channel estimate ĥk, averaging the receive power
in (3) over the introduced distribution of h̃k yields

T̂c,k = pHc Rkpc + pHk Rkpk +

Îk︷ ︸︸ ︷∑
i 6=k

pHi Rkpi + σ2
n︸ ︷︷ ︸

Îc,k=T̂k

(22)

where Rk , Eh̃k|ĥk

{
hkh

H
k

}
= ĥkĥ

H
k + σ2

e,kI.

Lemma 1. The conservative worst-case rates in (18) are
upper-bounded by

R̂c,k ≤ log2

(
1 + γ̂c,k

)
and R̂k ≤ log2

(
1 + γ̂k

)
(23)

where γ̂c,k and γ̂c,k are upper-bounds on the equivalent
conservative worst-case SINRs defined as

γ̂c,k , |pHc ĥk|2
(
Îc,k+ Ĩc,k

)−1
and γ̂k , |pHk ĥk|2

(
Îk+ Ĩk

)−1

(24)
with Ĩc,k = σ2

e,k‖pc‖2 and Ĩk = σ2
e,k‖pk‖2.

The proof is given in Appendix B. From (24), it can be seen
that the useful signal power components in γ̂c,k and γ̂k only
consist of parts incorporating the channel estimate, while the
parts of the desired signal power incorporating the CSIT errors,
namely Ĩc,k and Ĩk, appear as interference. This is explained
as follows: by removing the dependencies of equalizers (and
weights) on the actual channel, the robust rates (as guaranteed
by the BS) are optimized while ignoring the availability of
perfect CSIR, and hence treating parts of the desired signal
which incorporate h̃k as noise. This yields the self-interference
terms appearing in (24), which scale as Ĩc,k = O

(
P ac−αk

t

)
and

Ĩk = O
(
P ak−αk

t

)
. This is detrimental to the achievable worst-

case rates as perceived by the BS. For example, fixed CSIT
qualities give Ĩc,k and Ĩk that scale as O

(
P act

)
and O

(
P akt

)
respectively, resulting in saturating SINRs in (24) as Pt →∞,
which explains the behavior in [1], [29].

V. CUTTING-SET METHOD

In this section, we propose an algorithm that avoids con-
servative approximations by directly optimizing the worst-
case achievable rates. This algorithm employs an iterative
procedure, known as the cutting-set method [32], which
switches between two steps in each iteration: optimization
and pessimization (worst-case analysis). In the optimization
step, a sampled version of the semi-infinite problem is solved
over finite subsets of the uncertainty regions. In the pessimiza-
tion step, worst-case analysis is carried out where channels
that violate the constraints are determined and appended
to the uncertainty subsets. For the ith iteration, let Hk ,{
h

(1)
k , . . . ,h

(ik)
k

}
and Hc,k ,

{
h

(1)
c,k, . . . ,h

(ic,k)
c,k

}
be the kth

user’s discretized channel uncertainty regions for the private
rate and the common rate respectively. We define the index
sets I(i)

k , {1, . . . , ik} and I(i)

c,k , {1, . . . , ic,k}, where

|I(i)

k |, |I
(i)

c,k| ≤ i as a maximum of one channel vector per set
is added in each iteration. Although Rk and Rc,k are functions
of the same channel vector (hk), the corresponding uncertainty
region is sampled twice where the worst-case analysis is
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carried out individually. This is due to the fact that the private
and common messages are independently decoded, and hence
worst-case constraints should be satisfied for each case.

A. Cutting-Set Algorithm

For the ith iteration, the sampled problem writes as

R(i)
RS(Pt) :



max
R̄t,c̄,P

R̄t

s.t. Rk
(
h

(j)
k

)
+C̄k ≥ R̄t,∀j ∈ I

(i)

k , k ∈ K
Rc,k

(
h

(jc)
c,k

)
≥
∑K
l=1 C̄l,∀jc ∈ I

(i)

c,k, k ∈ K
C̄k ≥ 0, ∀k ∈ K
tr
(
PPH

)
≤ Pt.

(25)
The optimization step involves solving (25) yielding the point(
R̄

(i)
t , c̄(i),P(i)

)
. Pessimization is then carried out to deter-

mine the channel vectors under which the rate constraints are
most violated. The worst-case channels corresponding to the
kth user’s rates are obtained as

h∗k=arg min
hk∈Hk

R
(i)
k (hk) and h∗c,k=arg min

hc,k∈Hk

R
(i)
c,k(hc,k) (26)

where R(i)
k and R(i)

c,k denote the rates when P(i) is employed.
The rate constraints in (25) are examined under the worst-case
channels from (26). If R(i)

k

(
h∗k
)
+C̄

(i)
k < R̄

(i)
t , h∗k is appended

to Hk. In a similar manner, if R(i)
c,k

(
h∗c,k

)
<
∑K
l=1 C̄

(i)
l , h∗c,k

is appended to Hc,k. The cutting-set procedure is summarized
in Algorithm 2. Defining the rate violations after the ith
pessimization as V (i)

k , R̄
(i)
t − R

(i)
k

(
h∗k
)
− C̄(i)

k and V
(i)
c,k ,∑

l∈K C̄
(i)
l −R

(i)
c,k

(
h∗c,k

)
, the stopping criteria in Algorithm 2

is specified as a maximum violation, i.e.

max
k

{
max

{
V

(i)
k , V

(i)
c,k

}}
k∈K
≤ εV

where εV > 0 is some arbitrary tolerance constant.
The cutting-set algorithm converges to the optimum solu-

tion of the original problem given that the optimization and
pessimization steps are solved to global optimality in each
iteration [32]. However, the optimization step here involves
solving the non-convex problem in (25), and hence global
optimality may not be guaranteed in general. Alternatively,
a stationary solution can be guaranteed as follows.

Proposition 1. Given that the optimization step in Algorithm
2 yields a KKT point of the corresponding sampled problem
in (25), and the pessimization step is exact (i.e. the global
minimizers of (26) are obtained), then the iterates generated
by Algorithm 2 converge to the set of KKT points of the semi-
infinite problem in (7).

The proof of Proposition 1 employs ideas from [41], where
iterative methods (that coincide with the cutting-set algorithm)
are proposed to solve non-linear semi-infinite programs. De-
tails of the proof are relegated to Appendix C. In the follow-
ing, the optimization and pessimization steps are thoroughly
addressed. For ease of notation, the superscript (i) is dropped
from the variables where is its understood that optimization
and pessimization are part of a given iteration.

Algorithm 2 Cutting-Set method.
1: Input: Pt

2: Initialize: i←0, ik, ic,k←1 and Hk,Hc,k←
{̂
hk
}
,∀k∈K

3: repeat
4: i← i+ 1

Optimization:
5:

(
R̄

(i)
t , c̄(i),P(i)

)
← argR(i)(Pt)

Pessimization:
6: For all k ∈ K, do
7: Obtain h∗k,h

∗
c,k by solving (26)

8: if R(i)
k

(
h∗k
)

+ C̄
(i)
k <R̄

(i)
t then

9: ik ← ik + 1 and h
(ik)
k ← h∗k

10: Hk ←
{
Hk,h(ik)

k

}
11: end if
12: if R(i)

c,k

(
h∗k
)
<
∑K
l=1 C̄

(i)
l then

13: ic,k ← ic,k + 1 and h
(ic,k)
c,k ← h∗c,k

14: Hc,k ←
{
Hc,k,h

(ic,k)
c,k

}
15: end if
16: until stopping criteria is met
17: Output: P(i), R̄(i)

t and c̄(i)

B. Optimization

The Rate-WMMSE relationship in Section IV-A is revisited
to transform the sampled problem (25) into an equivalent
WMSE problem formulated as

R̄(i)
RS(Pt) : (27)

max
R̄t,c̄,P,g,u

R̄t

s.t.

1−ξk
(
h

(j)
k , g

(j)
k , u

(j)
k

)
+C̄k≥R̄t,∀j ∈ I

(i)

k , k ∈ K
1−ξc,k

(
h

(jc)
c,k , g

(jc)
c,k , u

(jc)
c,k

)
≥
∑K
l=1 C̄l,∀jc ∈ I

(i)

c,k, k ∈ K
C̄k ≥ 0, ∀k ∈ K
tr
(
PPH

)
≤ Pt.

g , {gc,k,gk | k ∈ K} is the sampled set of equalizers with
gc,k ,

{
g

(jc)
c,k | jc ∈ I

(i)

c,k

}
and gk ,

{
g

(j)
k | j ∈ I

(i)

k

}
, while

u , {uc,k,uk | k ∈ K} is the sampled set of weights where
uc,k ,

{
u

(jc)
c,k | jc ∈ I

(i)

c,k

}
and uk ,

{
u

(j)
k | j ∈ I

(i)

k

}
.

Contrary to the conservative approach, the sampling of the
equalizers and weights captures their dependencies on the
actual channel, which reflects the availability of perfect CSIR.

The AO principle used in Section IV-C is employed to
solve the sampled problem. For a given iteration, g is firstly
optimized by applying the MMSE solution in Section IV-A
to each equalizer in the sampled set, i.e. g(jc)

c,k = g
MMSE(jc)
c,k

and g
(j)
k = g

MMSE(j)
k for all jc, j and k. The optimality of

this step comes from the optimality of the MMSE solution for
each ξc,k

(
h

(jc)
c,k , g

(jc)
c,k

)
and ξk

(
h

(j)
k , g

(j)
k

)
. Next, u is optimized

in a similar manner using the solution in Section IV-A, i.e.
u

(jc)
c,k = u

MMSE(jc)
c,k and u

(j)
k = u

MMSE(j)
k . Finally, (R̄t, c̄,P)

are updated by solving problem (27) for fixed g and u. The
resulting problem is convex with a linear objective function
and quadratic and linear constraints, and can be efficiently
solved using interior-point methods [40]. Following the same
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argument in Section IV-C, the AO algorithm described here is
guaranteed to converge. Furthermore, the KKT optimality of
the generated solution is established in the following result.

Proposition 2. The iterates generated by the AO procedure
described above converge to the set of KKT points of the ith
sampled rate problem in (25).

The convergence of WMMSE algorithms to stationary
(KKT) points was established for the sum-rate problem [28]
and the max-min fair problem [37] in the context of the
MIMO Interfering BC (IBC) under prefect CSI and NoRS.
It was later shown that the WMMSE algorithm belongs to
a class of inexact BCDs, known as Successive Upper-bound
Minimization (SUM), and more general analysis and proofs
were established in [42], [43]. The proof of Proposition 2 is
based on [43], and is relegated to Appendix D.

Due to non-convexity, the KKT point obtained by the AO
algorithm may be suboptimal. However, the effectiveness of
this algorithm is demonstrated through simulation results.

C. Pessimization

For the outputs of the optimization step, the pessimization
step determines whether the rate constraints are violated under
an updated set of worst-case channels. This involves solving
the problems in (26), which can be formulated in terms of the
MMSEs due to their monotonic relationship with the rates.
The worst-case MMSEs are defined as

ε̄MMSE
k , max

hk∈Hk

εMMSE
k (hk) (28a)

ε̄MMSE
c,k , max

hc,k∈Hk

εMMSE
c,k (hc,k). (28b)

The private rate constraint is violated if we have ε̄MMSE
k >

2−(R̄t−C̄k), and the common rate constraint is violated given
that ε̄MMSE

c,k > 2−R̄c . Solving the problems (28) involves
maximizing non-linear fractional functions over compact con-
vex sets. Such problems can be solved using Dinkelbach’s
method [44], where the fractional program is transformed into
a parametric auxiliary problem solved iteratively. Next, the
employment of this method is further explained.

Lemma 2. h∗k and h∗c,k are the global maximizers of problems
(28a) and (28b) respectively if and only if they are the global
maximizers of the parametric problems formulated as

Dk(λk): max
hk∈Hk

Ik − λkTk and Dc,k(λc,k): max
hc,k∈Hk

Ic,k − λc,kTc,k

respectively, when the parameters λk and λc,k are given by
λ∗k , ε̄

MMSE
k and λ∗c,k , ε̄

MMSE
c,k respectively.

Lemma 2 follows directly from the theorem in [44]. It can
be seen that Dk(λ∗k),Dc,k(λ∗c,k) = 0. Hence, solving the pes-
simization problems in (28) is equivalent to finding the zeros of
their corresponding parametric auxiliary problems in Lemma
2. This can be achieved using Dinkelbach’s iterative algorithm
[44]. Note that it is commonly assumed that the fractional
program is concave-convex, i.e. with a concave numerator and
a convex denominator, yielding convex auxiliary problems.
Nevertheless, it follows from [44] that this assumption is not

necessary as long as the auxiliary problem can be solved to
global optimality for a given parameter.

The auxiliary problems in Lemma 2 are rewritten as

Dk(λk) :

max
hk∈Hk

hHk
(
(1− λk)Q̄k − λkQk

)︸ ︷︷ ︸
Ak(λk)

hk + (1− λk)σ2
n (29)

Dc,k(λc,k) :

max
hc,k∈Hk

hHc,k
(
(1− λc,k)Qp−λc,kQc

)︸ ︷︷ ︸
Ac,k(λc,k)

hc,k+(1−λc,k)σ2
n (30)

where Qk , pkp
H
k , Qc , pcp

H
c , Qp ,

∑K
k=1 Qk, and

Q̄k , Qp − Qk. This follows from substituting the receive
power and interference expressions in (3). For given param-
eters, (29) and (30) are Quadratically Constrained Quadratic
Programs (QCQPs), where Ak(λk) and Ac,k(λc,k) are sym-
metric and possibly indefinite5. Hence, (29) and (30) are non-
convex optimization problems in general. For this reason, we
resort to relaxation. First, we introduce the matrix variables
Xk = hkh

H
k and Xc,k = hc,kh

H
c,k from which the quadratic

terms in (29) and (30) are eliminated by writing hHk Akhk =
tr
(
XkAk

)
and hHc,kAc,khc,k = tr

(
Xc,kAc,k

)
. Next, the

equalities associated with the introduced matrices are relaxed
into inequalities such that Xk � hkh

H
k and Xc,k � hc,kh

H
c,k.

The resulting relaxed problems are formulated as

Dr
k(λk) :


max
Xk,hk

tr
(
XkAk(λk)

)
+ (1− λk)σ2

n

s.t. tr(Xk)− 2<(hHk ĥk) + ĥHk ĥk ≤ δ2
k[

Xk hk

hHk 1

]
� 0

(31)

Dr
c,k(λc,k) :


max

Xc,k,hc,k

tr
(
Xc,kAc,k(λc,k)

)
+(1−λc,k)σ

2
n

s.t. tr(Xc,k)−2<(hHc,kĥk)+ĥHk ĥk ≤ δ2
k[

Xc,k hc,k

hHc,k 1

]
� 0

(32)

where the relaxed inequalities are rewritten using the Schur
Complement. (31) and (32) are SDPs and can be efficiently
solved. Due to the relaxations, the feasible sets in (31) and
(32) contain their counterparts in (29) and (30). It follows
that Dr

k(λk) ≥ Dk(λk) and Dr
c,k(λc,k) ≥ Dc,k(λc,k). Before

proceeding to the next result, we denote the optimum solutions
of (31) and (32) as

(
X◦k,h

◦
k

)
and

(
X◦c,k,h

◦
c,k

)
respectively.

Lemma 3. The relaxations in (31) and (32) are tight at
optimality, i.e. X◦k = h◦kh

◦H
k and X◦c,k = h◦c,kh

◦H
c,k . As

a result, h◦k and h◦c,k are optimum solutions for (29) and
(30) respectively. Finally, we have Dr

k(λk) = Dk(λk) and
Dr

c,k(λc,k) = Dc,k(λc,k).

Lemma 3 follows directly from [40, Appendix B.1], by
noting that (29) and (30) are QCQPs, with a single constraint
each, that satisfy Slater’s condition6.

5Updating the parameters using Dinkelbach’s algorithm, we have
λk, λc,k ∈ [0, 1]. Ak(0),Ac,k(0) � 0, while Ak(1),Ac,k(1) � 0.
Otherwise, they are generally indefinite.

6It should be noted that each of (29) and (30) is also known as a trust-region
subproblem, and can be solved using alternative methods [45].
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Algorithm 3 Pessimization through Dinkelbach’s Algorithm

1: Initialize: λ(1)
k ← 2−(R̄t−C̄k) and m← 0

2: repeat
3: m← m+ 1
4: obtain Dk

(
λ

(m)
k

)
by solving (31)

5: h
(m)
k ← argDk

(
λ

(m)
k

)
6: λ

(m+1)
k ← εMMSE

k

(
h

(m)
k

)
from (14b)

7: until Dk
(
λ

(m)
k

)
≤ εD, or m = mmax

8: if m > 1 then
9: h∗k ← h

(m)
k

10: Output: h∗k
11: else
12: Output: {}
13: end if

Since (29) and (30) are globally solved for given parameters,
Dinkelbach’s algorithm can be employed. This is carried out
separately for εMMSE

k and εMMSE
c,k for all k ∈ K, as the worst-

case analysis is independent in each case. For εMMSE
k , the

parameter is initialized as λ(1)
k = 2−(R̄t−C̄k), and Dk

(
λ

(1)
k

)
is

obtained by solving the relaxed problem (31). Dk
(
λ

(1)
k

)
≤ 0

implies that λ(1)
k ≥ ε̄MMSE

k , as Dk
(
ε̄MMSE
k

)
= 0 and Dk

is strictly decreasing in its parameter [44]. In this case,
the rate constraint is not violated and there is no need to
proceed. Otherwise, the worst-case channel is updated as
h

(1)
k = argDk

(
λ

(1)
k

)
, and the parameter to be used in the

next iteration is obtained as λ
(2)
k = εMMSE

k

(
h

(1)
k

)
. This

procedure is summarized in Algorithm 3, where εD > 0
determines the accuracy of the solution, and {} corresponds to
an empty set. It follows directly from Lemma 2 that if the rate
constraints are violated, λ(m)

k and h
(m)
k converge to ε̄MMSE

k

and h∗k, respectively. For εMMSE
c,k , the parameter is initialized

as λ(1)
c,k = 2−R̄c and the same steps are followed yielding h∗c,k

if the common rate is violated, and {} otherwise7.
Since the optimization step in the previous subsection yields

a KKT point for the sampled problem, and the pessimization
step in this subsection is exact, it follows from Proposition 1
that a KKT point for problem (7) is obtained by Algorithm 2.

VI. SIMULATION RESULTS

In this section, the performance is assessed through sim-
ulations. All optimization problems requiring interior-point
methods are solved using the CVX toolbox [46]. A three-
user system with K,Nt = 3 is considered throughout the
simulations, unless stated otherwise. The noise variance is
fixed as σ2

n = 1. A given channel matrix H has i.i.d. entries
drawn from the distribution CN (0, 1). The corresponding
estimate is obtained as Ĥ = H − H̃, where each error
vector is drawn from a uniform distribution over the corre-
sponding uncertainty region with δ2

k = βkP
−αk
t , where βk

is a constant. We consider the conservative (con) and the
cutting-set (cs) methods for both the NoRS and RS strategies,
yielding four different designs: NoRS-con, NoRS-cs, RS-con
and RS-cs. The NoRS-con and NoRS-cs results are obtained

7Summary in an algorithm form is omitted to avoid repetition.
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Fig. 1. Rate performance for K,Nt = 3, and δ1, δ2, δ3 = δ.
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Fig. 2. Rate performance for K,Nt =3, δ1 =δ, and δ2, δ3 =δ
√

10P−0.5
t .

from Algorithm 1 and Algorithm 2 respectively, by discarding
the common message. It should be noted that the NoRS-con
design is equivalent to the MSE-based design in [11].

A. Max-Min Fair Rate Performance

First, we examine the robust max-min rate performance
for the four aforementioned designs. Results for non-scaling
CSIT errors (i.e. α1, α2, α3 = 0) are shown in Fig. 1 with
δ1, δ2, δ3 = δ, where δ = 0.05 and 0.15 for Fig. 1a and
1b, respectively. The worst-case rates are averaged over 100
realizations of Ĥ, where each estimate is obtained from an
independent realization of H. For a given strategy (NoRS or
RS), the cs design outperforms the con design, specifically
in the intermediate and high SNR regimes. This gap grows
larger with increased SNR and CSIT uncertainty, due to
the increased influence of self-interference resulting from the
conservative approximation. As expected from Theorem 1,
NoRS schemes saturate as SNR grows large (d̄∗ = 0). This
trend is also followed by the RS-con design, which at first
glance seems to contradict the result in Theorem 1, yet can
be explained in the light of the analysis in Section IV-D. On
the other hand, the RS-cs design coincides with the result
in (11) and achieves an ever growing rate performance with
an approximate DoF8 of 0.31 and 0.33 for δ = 0.05 and
0.15 respectively (d̄∗RS = 0.333). RS schemes give significant
performance gains over their NoRS counterparts for the entire
SNR range, with rate gains exceeding 20% and 60% for
δ = 0.05 and δ = 0.15 respectively at high SNRs.

Results for scaling CSIT errors are given in Fig. 2. The
CSIT quality of user-1 remains fixed with δ1 = δ, while errors
for user-2 and user-3 decay with SNR such that α2, α3 = 0.5

and β2, β3 = 10δ2, yielding δ2, δ3 = δ
√

10P−0.5
t . Therefore,

8Obtained by scaling the slope from 40 to 60 dB.
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we have δ2, δ3 < δ1 for SNRs less than 20 dB, δ2, δ3 = δ1
for 20 dB SNR, and δ2, δ3 > δ1 for SNRs greater than 20
dB. The general observations made for Fig. 1 still hold, with
the cs method providing improved performance over the con
method, and RS schemes outperforming NoRS schemes. From
a DoF perspective, the cs schemes perform almost as predicted
in Theorem 1: d̄∗ = 0.25 and d̄∗RS = 0.5. For δ = 0.05 and
0.15 respectively, NoRS-cs achieves DoFs of 0.26 and 0.24,
where RS-cs achieves DoFs of 0.53 and 0.47. On the other
hand, NoRS-con and RS-con fail to achieve the corresponding
DoFs due to self-interference.

After demonstrating the superiority of the cutting-set
method, we examine the RS gains in larger systems with
K,Nt = 4, 6 and 8. The performances of NoRS-cs and RS-cs
are given in Fig. 3a for non-scaling CSIT with δ1, . . . , δK = δ,
and Fig. 3b for scaling CSIT with δ1, . . . , δK = δ

√
10P−αt ,

where δ = 0.15 and α = 0.5. For a given scheme, the perfor-
mance generally degrades as the number of users increases.
This can be regarded to the increased MU interference in
NoRS, in addition to the fact that the common message is
shared among more users in RS. However, the performance
gains associated with the RS scheme are still significant.

B. Complexity Comparison

Next, we compare the complexities of the conservative
method in Algorithm 1 and the cutting-set method in Al-
gorithm 2. We consider K = Nt for simplicity, hence
reducing the complexity scaling orders to one parameter. In
each iteration of Algorithm 1, 2K equalizers are updated by
solving SDPs with a worst-case complexity of O(K3.5) each9,
while precoders are updated by solving a SDP with a worst-
case complexity of O(K8). On the other hand, each cutting-set
iteration of Algorithm 2 consists of an optimization step and
a pessimization step, which are iterative in their own rights.
Each optimization-iteration involves updating the precoders
by solving a convex problem with a number of quadratic
constraints that grows with the outer (cutting-set) iteration. For
the ith cutting-set iteration, the number of WMSE constraints
cannot exceed 2iK, and updating the precoders in each
inner (optimization) iteration can be formulated as a Second
Order Cone Program (SOCP) with a worst-case complexity of

9Worse-case computational costs of solving standard problems using
interior-point methods are given according to [47, Lecture 6]. The term that
accounts for the solution’s accuracy is omitted, e.g. [11].
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Fig. 4. Average run-time of NoRS and RS, conservative and cutting-set
methods for K,Nt =2, 4, 6 and 8, SNR=20 dB, and δ1, . . . , δK =δ.

O(i1.5K7.5). On the other hand, each pessimization-iteration
involves solving 2K SDPs with a cost of O(K6.5) each.

Due to the iterative nature of the two algorithms, in ad-
dition to the nested structure of Algorithm 2, a rigorous
analytic complexity comparison is not possible. Alternatively,
we evaluate their average running times using MATLAB on
a computer equipped with an Intel Core i7-3770 @3.4GHz
processor and 8.00 GB of RAM. Fig. 4 shows the average
running times (over 100 realizations) of the different schemes
versus the number of users/antennas at 20 dB SNR. For a
given method (con or cs), RS has longer running times than
NoRS due to the higher number of variables involved. The
con method (NoRS and RS) is hardly influenced by the level
of CSIT uncertainty, exhibiting a slight increase in running
times for larger δ due to the increased involvement of the
common message, which influences the convergence of the
AO algorithm. On the other hand, the cs method (NoRS and
RS) is more influenced by the degree of uncertainty, exhibiting
a faster increase in running times with K for higher δ. This
appears to be due to the higher number of pessimization
steps required to sample larger uncertainty regions, resulting
in an increased number of cutting-set iterations and a growing
complexity of the optimization step. It should be highlighted
that in feedback systems, channel quantization codebooks are
predetermined and known to the BS. Hence, corresponding
precoders can be calculated beforehand, and relatively long
running times do not prohibit the real-time application of such
algorithms under limited BS processing capabilities.

C. QoS Constrained Power Minimization

In this part we consider the inverse power problem, i.e.
minimizing the total transmit power under a minimum rate
constraint, also known as the QoS problem. The RS version
of this problem with a minimum rate target R̄t writes as

PRS(R̄t) :


min
c̄,P

tr
(
PPH

)
s.t. R̄k + C̄k ≥ R̄t, ∀k ∈ K

R̄c,k ≥
∑K
l=1 C̄l, ∀k ∈ K

C̄k ≥ 0, ∀k ∈ K.

(33)

On the other hand, the NoRS counterpart is formulated as

P(R̄) :

min
Pp

tr
(
PpP

H
p

)
s.t. R̄k ≥ R̄, ∀k ∈ K.

(34)
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Fig. 5. Power minimization under a QoS constraint of 3.3219 bps/Hz in a
system with K,Nt = 3, σ2

n = 1, and δ1, δ2, δ3 = δ.

The power problem is solved using the conservative and
cutting-set methods described in the previous sections. While
modifying Algorithm 1 and Algorithm 2 to address (33) and
(34) is straightforward, it should be noted that an arbitrary
initialization of P may easily yield an infeasible point which
fails to satisfy the rate constraints. In this case, the AO
algorithm fails to produce a feasible solution, making the
initialization a very crucial step. On the other hand, rate
optimization problems are easily initialized by picking any
precoder that satisfies tr

(
PPH

)
≤ Pt. This is exploited to

obtain a feasible P for the power problems. First, let us
consider RS-con with a rate constraint R̂t. Pt is initialized and
the rate optimization procedure in Algorithm 1 is performed
until we obtain R̂

(n)
t ≥ R̂t. The corresponding P is feasible

for the power problem since it satisfies the rate constraint.
If R̂(n)

t converges before satisfying the rate constraint, Pt is
increased until a feasible point is found. A feasible P can be
obtained using very few iterations if Pt is adjusted properly.
For RS-cs and NoRS-cs, a similar procedure is followed at the
beginning of each optimization step, while noting that some
rate constraints may not be feasible for NoRS-cs, and hence Pt

should not be increased indefinitely. NoRS-con boils down to
the SDP solution in [12], which does not require initialization.

For power optimization, we only consider non-scaling CSIT,
i.e. δ2

1 , . . . , δ
2
K = O(1) and α1, . . . , αK = 0. This is particu-

larly relevant in this scenario where we assume no BS power
constraint, and the CSIT quality is not expected to scale with
the transmit power variation during the optimization procedure
as channel estimation and feedback is carried out prior to
the precoder design. In the simulations, the minimum rate
constraint is set to 3.3219 bps/Hz, which corresponds to a
worst-case user SINR of 9 dB for the NoRS case [12], [14].
The four designs are tested under 100 channel realizations, for
δ1, δ2, δ3 = δ, where δ ∈ {0.01, 0.05, 0.1, 0.15}.

Fig. 5a shows the number of realizations for which the
different designs yield a feasible solution. For the NoRS
schemes, the number of feasible channels decreases as the
CSIT uncertainty increases. NoRS-cs outperforms NoRS-con
in this regards due to the latter’s employment of conservative
approximations. The RS schemes yield feasible solutions for
all realizations, with an improvement exceeding 100% com-
pared to NoRS schemes at δ = 0.15. This is explained as
follows: the rate and the power problems are monotonically
non-decreasing in their arguments, and are related such that
R
(
P(R̄)

)
= R̄ and RRS

(
PRS(R̄t)

)
= R̄t, which can be

shown by contradiction and power scaling [4], [48]. From
the monotonicity of R(Pt) and Theorem 1, it follows that
under non-scaling CSIT qualities, R

(
Pt

)
converges to a finite

maximum value as Pt → ∞. The monotonicity of P(R̄)
dictates that this value is the maximum feasible rate. On the
other hand, RRS(Pt) does not converge. Therefore, any finite
rate is feasible for PRS(R̄t), which is always guaranteed by
the cutting-set method. This can also be explained by noting
the QoS multicast problem [48], which is always feasible, is
in fact a subproblem of (33).

Fig. 5b shows the total transmit powers averaged over real-
izations which are feasible for all designs, i.e. the intersection
of the three feasible sets for a given δ. It can be seen that RS
schemes are more efficient in terms of total transmit power
compared to NoRS designs. Intuitively, we expect this contrast
to increase with δ (by reversing the observations in Fig. 1).
This holds if infeasible realizations are assigned infinitely large
transmit powers. However, since more realizations are omitted
for increased δ, the powers obtained in Fig. 5a for a larger δ
are in fact averaged over very well conditioned channels.

VII. CONCLUSION

The classical robust optimization problem of achieving max-
min fairness in a MU-MISO system with bounded CSIT errors
was addressed using an unconventional RS transmission strat-
egy. We analytically proved that the proposed RS strategy out-
performs the conventional NoRS strategy in the interference
limited regime. Although a solution for the RS design problem
can be obtained using the conservative WMMSE approach
in [29], we demonstrated the limitations of such approach
through deriving an upper-bound on the resulting conserva-
tive performance. This upper-bound explains the saturating
performances observed in [29] and [1] which contradict the
predictions from the DoF analysis. Alternatively, we proposed
a non-conservative algorithm based on the cutting-set method,
and proved its convergence to the set of KKT points of
the non-convex optimization problem. The superiority of the
proposed algorithm and the gains of RS were demonstrated
through simulations. The approach was also extended to solve
the QoS problem, where it was shown that RS eliminates the
feasibility issue arising in NoRS designs. A less pronounced
yet highly important contribution of this paper is that it invites
a rethinking of robust designs in other interference-limited
scenarios in the light of the RS strategy, for example: multi-
cell transmission [29], cognitive radio beamforming [49], and
energy efficient beamforming [50], to name a few.

APPENDIX A
PROOF OF THEOREM 1

The following lemmas are instrumental to the proof. First,
let us define the function (x)+ , max {x, 0}, where x ∈ R.

Lemma 4. [29, Lemma 1] Given the ball uncertainty model
and for any p ∈ CNt , we have

max
hk∈Hk

|hHk p| = |ĥHk p|+ δk‖p‖

min
hk∈Hk

|hHk p| =
(
|ĥHk p| − δk‖p‖

)+
.
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Lemma 5. There exists a feasible RS precoding scheme that
achieves the DoF
d̂c = 1− ā and d̂k = min{(αk + ak − āk)+, ak} (35)

for all ak ∈ [0, 1], ā , maxj{aj}Kj=1 and āk , maxj{aj}j 6=k.

Proof: We consider a ZF-BF design based on the
imperfect estimate Ĥ for the private precoders such that
Pp =

(
ĤH

)†
B, where B , diag

(√
q1/b1, . . . ,

√
qK/bK

)
,

and b1, . . . , bK are constants that normalize the columns of(
ĤH

)†
. The existence of such solution is guaranteed by

Assumption 1. The common precoder is given as pc =
√
qce1,

where ac is set to 1. We define the worst-case SINRs as
γ̄c,k , min

hk∈Hk

γc,k

(
hk
)

and γ̄k , min
hk∈Hk

γk
(
hk
)

10. By applying

the described scheme, γ̄k is lower-bounded as

γ̄k ≥
qk(
√

1/bk − δk)2∑
i 6=k

∣∣h̃Hk pi
∣∣2 + σ2

n

≥
qk(
√

1/bk − δk)2

δ2
k

∑
i 6=k

qi + σ2
n

. (36)

The left inequality in (36) follows from Lemma 4 and the
assumption that |ĥHk pk|2 > δ2

kqk, i.e. small error [51].
The right inequality is obtained from applying the Cauchy-
Schwarz inequality and ‖h̃k‖2 ≤ δ2

k to the denominator.
The numerator scales as O

(
P akt

)
, while the denominator

scales as O
(
P

(āk−αk)+

t

)
. It follows from (5) and (9) that

d̄k ≥ min{(αk + ak − āk)+, ak}. For γ̄c,k, we write

γ̄c,k ≥
qc|hk,1|2

‖hk‖2
∑K
k=1 qk + σ2

n

= O
(
P

(1−ā)
t

)
(37)

where the Cauchy-Schwarz inequality is applied to the de-
nominator, and both |hk,1|2 and ‖hk‖2 scale as O(1) from
Assumption 1. From (5) and (9), we have d̄c ≥ 1− ā.

Proof of Theorem 1: To characterize the optimum DoF
performance, we define the optimum precoding schemes for
(7) and (8) as

{
P∗(Pt)

}
Pt

and
{
P∗p(Pt)

}
Pt

respectively,
where the corresponding powers and exponents are denoted
by q∗c , q∗k, a∗c and a∗k.

1) Proof of (10): We start by showing that for any given
precoding scheme with a given power allocation, the achiev-
able private DoF in Lemma 5 cannot be exceeded, i.e.

d̄k ≤ min {(αk + ak − āk)+, ak}. (38)

The worst-case SINR is upper-bounded as γ̄k ≤ γk(hk), where
hk ∈ Hk. hk is selected such that the lth user’s interference
term is maximized in accordance with Lemma 4, i.e.

∣∣ĥHk pl+

h̃Hk pl
∣∣ =

∣∣ĥHk pl
∣∣+ δk‖pl‖, where l is chosen such that al =

āk , max {aj}j 6=k. As a result, we obtain the upper-bound

γ̄k ≤
∣∣hHk pk

∣∣2(
|ĥHk pl|+δk‖pl‖

)2
+
∑
i6=k,l

∣∣ĥHk pi+h̃Hk pi
∣∣2+σ2

n

≤ ‖hk‖
2qk

δ2
kql + σ2

n

. (39)

where (39) follows from applying the Cauchy-Schwarz in-
equality and discarding non-negative interference terms. From

10Worst-case channels are equivalently obtained using the rates or SINRs

Assumption 1, it is evident that (39) scales as the lower-bound
in (36), from which (38) directly follows.

The optimum DoF satisfies d̄∗ ≤ d̄∗k,∀k ∈ K, where d̄∗k is
the kth user’s DoF at optimality. From (38), we write

d̄∗ ≤ min
k

{
min{αk + a∗k − ā∗k, a∗k}

}K
k=1

(40)

where (·)+ is omitted by assuming that (αk + a∗k − ā∗k) ≥ 0.
This assumption is valid as (αk+a∗k− ā∗k) < 0 yields d̄∗ = 0,
which is maintained if a∗k is increased to ā∗k−αk. On the other
hand, d̄∗ > 0 is only obtained when (αk + a∗k− ā∗k) > 0. (40)
is further upper-bounded as

d̄∗ ≤min{α1+a∗1−ā∗1, a∗1}+ min{α2+a∗2−ā∗2, a∗2}
2

(41)

≤ α1 + a∗1 − ā∗1 + α2 + a∗2 − ā∗2
2

(42)

≤ α1 + α2

2
. (43)

(41) follows from the fact that d̄∗ is upper-bounded by the
average of any two DoFs, and (42) is obtained by noting that
the point-wise minimum is upper-bounded by any element
in the set. (43) follows from a∗j ≤ ā∗k, ∀j 6= k. From
Lemma 5, allocating the private powers such that a1 = α2

and a2, . . . , aK = α1+α2

2 , we achieve d̄k ≥ α1+α2

2 , ∀k ∈ K.
2) Proof of (11): We start this part by showing that

d̄c + d̄k ≤ min {1 + αk − āk, 1}. (44)

This result follows from

R̄c + R̄k ≤ R̄c,k + R̄k

≤ Rc,k(hk
)

+Rk
(
hk
)

(45)

= log2

(
Tc,k

(
hk
))
− log2

(
Ik
(
hk
))

(46)

= log2(Pt)− (āk − αk)+ log2(Pt) +O(1) (47)

where (45) is obtained using the same hk employed in (39),
(46) follows from the rate definitions, and (47) is obtained
using means of previous analysis.

The optimum DoF satisfies d̄∗RS ≤ c̄∗k + d̄∗k, ∀k ∈ K, where∑K
k=1 c̄

∗
k = d̄∗c and c̄∗k ≥ 0. An upper-bound is obtained by

taking the average of any number of user DoFs. To obtain a
tighter upper-bound, we optimize over the number of averaged
users such that

d̄∗RS ≤ min
J∈K

∑J
k=1

(
c̄∗k + d̄∗k

)
J

≤ min
J∈K

d̄∗c +
∑J
k=1 d̄

∗
k

J
(48)

where (48) follows from
∑J
k=1 c̄

∗
k ≤ d̄∗c . The argument used

to omit (·)+ in (40) cannot be directly applied for (48).
Alternatively, we start by assuming that (αk + a∗k − ā∗k) ≥
0, ∀k ∈ {1, . . . , J}, for a given J . For the case where J is
an odd number, we write

d̄∗c +
∑J
k=1 d̄

∗
k

J
=
d̄∗c + d̄∗J +

∑J−1
k=1 d̄

∗
k

J

≤
1 +

∑J−1
k=1 (αk + a∗k − ā∗k)

J
(49)

≤
1 +

∑J−1
k=1 αk
J

. (50)
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(49) follows from (44) and (38), where the elements 1 and
(αk + a∗k − ā∗k) are picked to upper-bound d̄∗c + d̄∗J and d̄∗k
respectively. (50) is obtained by writing the sum in (49) as
a sum of pairs, and using the approach in (43). For the case
where J is an even number, we write

d̄∗c +
∑J
j=1d̄

∗
j

J
=
d̄∗c + d̄∗1 + d̄∗J +

∑J−1
k=2 d̄

∗
k

J

≤
1+α1−ā∗1+a∗J+

∑J−1
k=2 (αk+a∗k−ā∗k)

J
(51)

≤
1 +

∑J−1
k=1 αk
J

. (52)

In (51), 1+α1− ā∗1 and a∗J are chosen to upper-bound d̄∗c + d̄∗1
and d̄∗J respectively. (52) is obtained from ā∗1 ≥ a∗J and the
approach in (50). If we assume that a given (αk+a∗k−ā∗k) < 0
for a subset of {1, . . . , J}, and hence d̄∗j = 0, we cannot
exceed (50) and (52). Combining this with (48), we obtain

d̄∗RS ≤ min
J∈{2,...,K}

1 +
∑J−1
j=1 αj

J
. (53)

where J = 1 has been omitted. Next, we show that this upper-
bound is achievable by a feasible precoding scheme. From
Lemma 5, allocating the powers such that ak = ā for all k, we
achieve DoFs d̄k and d̄c of min {αk, ā} and 1− ā respectively.
We show that there exists ā ∈ [0, 1] and feasible {c̄k}Kk=1 such
that c̄k + min {αk, ā} achieves the upper-bound in (53).

For a given J , the corresponding upper-bound
1+

∑J−1
j=1 αj

J
is denoted by d̄UB

RS (J). Let J∗ be the argument of the mini-
mization in (53), i.e. d̄UB

RS (J∗) ≤ d̄UB
RS (J). If J∗ < K,

αJ∗−1 ≤ d̄UB
RS (J∗) ≤ αJ∗ (54)

which is shown in the following. First, we note that

d̄UB
RS (J + 1) =

Jd̄UB
RS (J) + αJ
J + 1

(55)

d̄UB
RS (J − 1) =

Jd̄UB
RS (J)− αJ−1

J − 1
. (56)

Since d̄UB
RS (J∗) ≤ d̄UB

RS (J∗+ 1) and d̄UB
RS (J∗) ≤ d̄UB

RS (J∗− 1),
the right and left inequalities in (54) follow from (55) and (56)
respectively, as the average increases by including αJ in (55)
and excluding αJ−1 in (56). For J∗ = K, the right inequality
in (54) does not necessarily hold, but the left inequality always
holds. Hence, we have one of the two following cases.

1) J∗ < K or J∗ = K and (54) holds: for this case, we
set ā = d̄UB

RS (J∗). We obtain DoFs of d̄k = αk,∀k <
J∗, d̄k = d̄UB

RS (J∗),∀k ≥ J∗, and d̄c = 1 − d̄UB
RS (J∗).

The common DoF is split such that c̄k = d̄UB
RS (J∗) −

αk,∀k < J∗, and c̄k = 0,∀k ≥ J∗. The left inequality
in (54) guarantees that c̄k ≥ 0, while we can see that∑J∗−1
k=1 c̄k = (J∗ − 1)d̄UB

RS (J∗)−
∑J∗−1
k=1 αk = d̄c.

2) J∗ = K and d̄UB
RS (K) ≥ αk holds ∀k ∈ K: we set

ā = αK obtaining DoFs of d̄k = αk and d̄c = 1− αK .
The common DoF is split as: c̄k = d̄UB

RS (K)−αK , which
are non-negative and satisfy

∑K
k=1 c̄k = d̄c.

This completes the proof.

APPENDIX B
PROOF OF LEMMA 1

For any pair (ĝc,k, ûc,k), independent of the actual channel
realization, and a given estimate ĥk, averaging the MSEs in
(12) over the error distribution in Section IV-D yields

ε̂c,k(ĝc,k, ûc,k) = |ĝc,k|2T̂c,k − 2<
{
ĝc,kĥ

H
k pc

}
+ 1 (57a)

ε̂k(ĝc,k, ûc,k) = |ĝk|2T̂k − 2<
{
ĝkĥ

H
k pk

}
+ 1. (57b)

The optimum equalizers for (57) are given by ĝMMSE
c,k =

pHc ĥkT̂
−1
c,k and ĝMMSE

k = pHk ĥkT̂
−1
k . The corresponding

average MMSEs are given by ε̂MMSE
c,k = 1− T̂−1

c,k |pHc ĥk|2 and
ε̂MMSE
k = 1 − T̂−1

k |pHk ĥk|2. In a similar manner, averaging
the WMSEs in (15) yields

ξ̂c,k
(
ĝc,k, ûc,k

)
= ûc,kε̂c,k(ĝc,k, ûc,k

)
− log2(ûc,k) (58a)

ξ̂k
(
ĝk, ûk

)
= ûkε̂k(ĝk, ûk

)
− log2(ûk). (58b)

We have maxhk∈Hk
ξc,k
(
hk, ĝc,k, ûc,k

)
≥ ξ̂c,k

(
ĝc,k, ûc,k

)
and

maxhk∈Hk
ξk
(
hk, ĝk, ûk

)
≥ ξ̂k

(
ĝc,k, ûk

)
, as the maximum is

lower-bounded by the average for any distribution of hk (or
equivalently h̃k given ĥk) defined over Hk. Combining this
with (18), it follows that

R̂c,k ≤ 1−min
ûc,k,ĝc,k

ξ̂c,k
(
ĝc,k, ûc,k

)
and R̂k ≤ 1−min

ûk,ĝk
ξ̂k
(
ĝk, ûk

)
(59)

where the minimizations assume the closed-from solutions(
ĝMMSE

c,k , ûMMSE
c,k

)
and

(
ĝMMSE
k , ûMMSE

k

)
, with ûMMSE

c,k ,(
ε̂MMSE

c,k

)−1
and ûMMSE

k ,
(
ε̂MMSE
k

)−1
. By substituting this

back into (59), the upper-bounds in (23) are obtained. �

APPENDIX C
PROOF OF PROPOSITION 1

Consider the semi-infinite optimization problem

min
x

f0(x)

s.t. fm(x, t) ≤ 0, ∀t ∈ Tm,m ∈M
(60)

where M , {1, . . . ,M}, and T1,. . . ,TM are compact infinite
index sets (or uncertainty regions) [52], [53]11. The cutting-
set algorithm solves (60) by solving a sequence of sampled
problems. The ith sampled problem is given by

min
x

f0(x)

s.t. fm(x, t) ≤ 0, ∀t ∈ T (i)
m ,m ∈M

(61)

where T (i)
m ⊂ Tm is a finite subset. Let F (i) be the feasible

set of the ith problem, and x̄(i) ∈ F (i) be a feasible solution
(not necessarily optimum). We assume that F (1) is compact,
f0(·) and f1(·, t), . . . , fM (·, t) are continuously differentiable
in x ∈ F (1), and the pessimization step is exact. Under such
assumptions, it follows from [32, Section 5.2] that the iterates
generated by the cutting-set algorithm converge to a feasible
point of problem (60). In particular, we have

fm(x̄, t) ≤ 0,∀t ∈ Tm,m ∈M (62)

11x is the optimization variable here and should not be confused with the
transmit signal in (1) and (2).
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where x̄ is a limit point of the algorithm12. Next, we show
that if x̄(i) is a KKT point of (61) for all i, then x̄ is a KKT
point of (60). The Lagrangian of (61) is given by

L(x,λ(i)) = f0(x) +

M∑
m=1

∑
t∈T (i)

m

λ
(i)
m,tfm(x, t) (63)

where λ(i) ,
{
λ

(i)
m,t | t ∈ T

(i)
m ,m ∈M

}
is the associated set

of non-negative multipliers. We define the discrete measures
µ

(i)
1 , . . . , µ

(i)
M on T1,. . . ,TM respectively such that

µ(i)
m (t) =

{
λ

(i)
m,t, ∀t ∈ T

(i)
m

0, ∀t ∈ Tm \ T (i)
m .

(64)

It follows that the Lagrangian in (63) can be expressed as

L(x,µ(i)) = f0(x) +

M∑
m=1

∫
t∈Tm

fm(x, t)dµ(i)
m (t) (65)

where µ(i) ,
{
µ

(i)
m | m ∈ M

}
. Let (x̄(i), µ̄(i)) denote the

KKT solution of problem (61) obtained in the i iteration and
suppose that some regularity condition holds13. The corre-
sponding KKT optimality conditions are given by

∇xL(x̄(i), µ̄(i)) = 0 (66a)

fm(x̄(i), t) ≤ 0,∀t ∈ T (i)
m ,m ∈M (66b)

µ̄(i)
m ≥ 0,∀m ∈M (66c)∫
t∈Tm

fm(x̄(i), t)dµ̄(i)
m (t) = 0,∀m ∈M (66d)

where µ̄(i)
m ≥ 0 means that the measure is non-negative.

The sequence
{
x̄(i)
}∞
i=1

lies in the compact set F (1), as
F (1) ⊇ F (i) for all i. Hence, there exists a subsequence{
x̄(ir)

}∞
r=1

converging to x̄. The regularity condition implies
that at each x̄(i), the set of KKT multipliers that satisfy (66)
is bounded [54]. Therefore, it is assumed without loss of
generality that the subsequence

{
µ̄(ir)

}∞
r=1

converges weakly
to the accumulation point µ̄. Combining these observations
with the continuity of the objective and constraint functions
and their gradients implies that the solution (x̄, µ̄) satisfies

∇xL(x̄, µ̄) = 0 (67a)
µ̄m ≥ 0,∀m ∈M (67b)∫
t∈Tm

fm(x̄, t)dµ̄m(t) = 0,∀m ∈M (67c)

where (67a) and (67c) can be shown using the same steps
in the proof of [41, Theorem 2.1], while (67b) follows from
(66c). Combining (67) with (62) implies that (x̄, µ̄) satisfies
the KKT conditions of problem (60), and x̄ is a KKT point14.
Since the iterates lie in a compact set, the result holds for any
sequence of iterates generated by the algorithm.

12While global optimality of the optimization step is assumed in [32], it is
not necessary for the convergence of the algorithm and the feasibility of its
limit point. This is also shown in the proof of [41, Theorem 2.1].

13In particular, it is assumed that the Mangasarian-Fromovitz Constraint
Qualification (MFCQ) holds at stationary points of (60) and (61).

14The semi-infinite problem in (60) has finite active constraints at KKT
points. Hence, the measures µ̄1, . . . , µ̄M have finite supports [52], [53].

Now, we observe that problems (7) and (25) are instances
of problems (60) and (61) respectively, with continuously dif-
ferentiable objective and constraint functions [28], [37]. Also,
P lies in the compact set given by

{
P | tr

(
PPH

)
≤ Pt

}
.

The same holds for the rate variables R̄t and c̄, which belong
to compact rate regions. Hence, the feasible sets for (7) and
(25) are compact, which completes the proof. �

APPENDIX D
PROOF OF PROPOSITION 2

The AO procedure described in Section V-B is an instance of
the Successive Convex Approximation (SCA) method in [43,
Section 2.1]. In particular, updating (R̄t, c̄,P) in each iteration
corresponds to solving a convex approximation of (25), where
the WMSEs in (27) approximate the rates around P(n−1),
which is obtained from the previous iteration. Moreover, it
can be shown that the conditions in [43, Assumption 1] are
satisfied and Slater’s condition holds for the convex approxi-
mated problem (see Sections 3.1.2 and 3.1.4 in [43]). Hence,
it follows from [43, Theorem 1] that any limit point of the AO
procedure is a KKT point of problem (25). Since the iterates
lie in a compact set (shown in Appendix C), the convergence
to the set of KKT points follows (see [42, Corollary 1]). �
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