688 research outputs found

    Reduction of HARQ Latency for URLLC 5G Services Based on Network Slicing and Massive MIMO Hybrid Beamforming

    Get PDF
    Ultra-Reliable and Low-Latency Communications (URLLC)  is one of the three generic 5G services and probably the most challenging one, with strict quality of service requirements of 99.999% or more reliability and <1 milliseconds (ms) radio latency. To achieve latency targets, contributors to latency need to be addressed. Hybrid automatic repeat request (HARQ) retransmissions are major contributor to latency and need to be limited. The objective of this paper is to study the benefit of using Massive MIMO (M-MIMIO) along with radio network slicing to reduce number of HARQ retransmissions. A practical type of M-MIMO beamforming named hybrid beamforming is used. The performance of the proposed system is evaluated with slicing, without slicing and by alternating number of data streams per user. This work highlights the importance of technology enablers, such as M-MIMO and network slicing, in addressing quality-of-service (QoS) latency requirements for URLLC applications

    Multi-user MIMO beamforming:implementation, verification in L1 capacity, and performance testing

    Get PDF
    Abstract. A certain piece of technology takes a lot of effort, research, and testing to reach the productisation phase. Radio features are implemented in layer 1 (L1) before moving to the hardware implementation phase, where their functioning is tested and verified. The target of the thesis is to implement and verify beamforming based multi-user multiple-input multiple-output (MU-MIMO) in L1 capacity and performance testing (PET) environment. The L1 testing environment mainly focuses on 4G and 5G stand-alone (SA) cases, while the focus of this thesis work is only on 5G SA technology, which features beamforming and MU-MIMO. Beamforming and MU-MIMO have been tested in an end-to-end system but not specifically in L1. The L1 testing provides a deeper analysis of beamforming and MU-MIMO in L1 and aids in problem identification at an early productisation phase, saving both time and money. L1 PET has multiple components that work together for L1 data transmission in both uplink (UL) and downlink (DL) directions and handle the verification of the transmitted data. The main components that play a key role in the implementation of multi-user MIMO beamforming concern frame design setup, message setup for UL and DL using correct channels and interfaces, transmission of the generated data in UL and DL, and message capturing at L1 end (whether correct messages are transmitted or not). For verification purposes, methods such as analysing plots from L1 log results based on comparison with radio specifications are used to determine whether the generated test output is correct or not. Finally, performance metrics, such as error vector magnitude (EVM), UE per transmission time interval (TTI), number of layers per UE, channel quality indicator (CQI), physical resource block (PRB) count, and throughput, are evaluated to assess the capacity and performance correctness of the implemented test setup

    Frequency-domain transmit processing for MIMO SC-FDMA in wideband propagation channels

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Two-Stage Subspace Constrained Precoding in Massive MIMO Cellular Systems

    Full text link
    We propose a subspace constrained precoding scheme that exploits the spatial channel correlation structure in massive MIMO cellular systems to fully unleash the tremendous gain provided by massive antenna array with reduced channel state information (CSI) signaling overhead. The MIMO precoder at each base station (BS) is partitioned into an inner precoder and a Transmit (Tx) subspace control matrix. The inner precoder is adaptive to the local CSI at each BS for spatial multiplexing gain. The Tx subspace control is adaptive to the channel statistics for inter-cell interference mitigation and Quality of Service (QoS) optimization. Specifically, the Tx subspace control is formulated as a QoS optimization problem which involves an SINR chance constraint where the probability of each user's SINR not satisfying a service requirement must not exceed a given outage probability. Such chance constraint cannot be handled by the existing methods due to the two stage precoding structure. To tackle this, we propose a bi-convex approximation approach, which consists of three key ingredients: random matrix theory, chance constrained optimization and semidefinite relaxation. Then we propose an efficient algorithm to find the optimal solution of the resulting bi-convex approximation problem. Simulations show that the proposed design has significant gain over various baselines.Comment: 13 pages, accepted by IEEE Transactions on Wireless Communication

    ํฌ์†Œ์ธ์ง€๋ฅผ ์ด์šฉํ•œ ์ „์†ก๊ธฐ์ˆ  ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2019. 2. ์‹ฌ๋ณ‘ํšจ.The new wave of the technology revolution, named the fifth wireless systems, is changing our daily life dramatically. These days, unprecedented services and applications such as driverless vehicles and drone-based deliveries, smart cities and factories, remote medical diagnosis and surgery, and artificial intelligence-based personalized assistants are emerging. Communication mechanisms associated with these new applications and services are way different from traditional communications in terms of latency, energy efficiency, reliability, flexibility, and connection density. Since the current radio access mechanism cannot support these diverse services and applications, a new approach to deal with these relentless changes should be introduced. This compressed sensing (CS) paradigm is very attractive alternative to the conventional information processing operations including sampling, sensing, compression, estimation, and detection. To apply the CS techniques to wireless communication systems, there are a number of things to know and also several issues to be considered. In the last decade, CS techniques have spread rapidly in many applications such as medical imaging, machine learning, radar detection, seismology, computer science, statistics, and many others. Also, various wireless communication applications exploiting the sparsity of a target signal have been studied. Notable examples include channel estimation, interference cancellation, angle estimation, spectrum sensing, and symbol detection. The distinct feature of this work, in contrast to the conventional approaches exploiting naturally acquired sparsity, is to exploit intentionally designed sparsity to improve the quality of the communication systems. In the first part of the dissertation, we study the mapping data information into the sparse signal in downlink systems. We propose an approach, called sparse vector coding (SVC), suited for the short packet transmission. In SVC, since the data information is mapped to the position of sparse vector, whole data packet can be decoded by idenitifying nonzero positions of the sparse vector. From our simulations, we show that the packet error rate of SVC outperforms the conventional channel coding schemes at the URLLC regime. Moreover, we discuss the SVC transmission for the massive MTC access by overlapping multiple SVC-based packets into the same resources. Using the spare vector overlapping and multiuser CS decoding scheme, SVC-based transmission provides robustness against the co-channel interference and also provide comparable performance than other non-orthogonal multiple access (NOMA) schemes. By using the fact that SVC only identifies the support of sparse vector, we extend the SVC transmission without pilot transmission, called pilot-less SVC. Instead of using the support, we further exploit the magnitude of sparse vector for delivering additional information. This scheme is referred to as enhanced SVC. The key idea behind the proposed E-SVC transmission scheme is to transform the small information into a sparse vector and map the side-information into a magnitude of the sparse vector. Metaphorically, E-SVC can be thought as a standing a few poles to the empty table. As long as the number of poles is small enough and the measurements contains enough information to find out the marked cell positions, accurate recovery of E-SVC packet can be guaranteed. In the second part of this dissertation, we turn our attention to make sparsification of the non-sparse signal, especially for the pilot transmission and channel estimation. Unlike the conventional scheme where the pilot signal is transmitted without modification, the pilot signals are sent after the beamforming in the proposed technique. This work is motivated by the observation that the pilot overhead must scale linearly with the number of taps in CIR vector and the number of transmit antennas so that the conventional pilot transmission is not an appropriate option for the IoT devices. Primary goal of the proposed scheme is to minimize the nonzero entries of a time-domain channel vector by the help of multiple antennas at the basestation. To do so, we apply the time-domain sparse precoding, where each precoded channel propagates via fewer tap than the original channel vector. The received channel vector of beamformed pilots can be jointly estimated by the sparse recovery algorithm.5์„ธ๋Œ€ ๋ฌด์„ ํ†ต์‹  ์‹œ์Šคํ…œ์˜ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ  ํ˜์‹ ์€ ๋ฌด์ธ ์ฐจ๋Ÿ‰ ๋ฐ ํ•ญ๊ณต๊ธฐ, ์Šค๋งˆํŠธ ๋„์‹œ ๋ฐ ๊ณต์žฅ, ์›๊ฒฉ ์˜๋ฃŒ ์ง„๋‹จ ๋ฐ ์ˆ˜์ˆ , ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๋งŸ์ถคํ˜• ์ง€์›๊ณผ ๊ฐ™์€ ์ „๋ก€ ์—†๋Š” ์„œ๋น„์Šค ๋ฐ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋ฐ ์„œ๋น„์Šค์™€ ๊ด€๋ จ๋œ ํ†ต์‹  ๋ฐฉ์‹์€ ๋Œ€๊ธฐ ์‹œ๊ฐ„, ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ, ์‹ ๋ขฐ์„ฑ, ์œ ์—ฐ์„ฑ ๋ฐ ์—ฐ๊ฒฐ ๋ฐ€๋„ ์ธก๋ฉด์—์„œ ๊ธฐ์กด ํ†ต์‹ ๊ณผ ๋งค์šฐ ๋‹ค๋ฅด๋‹ค. ํ˜„์žฌ์˜ ๋ฌด์„  ์•ก์„ธ์Šค ๋ฐฉ์‹์„ ๋น„๋กฏํ•œ ์ข…๋ž˜์˜ ์ ‘๊ทผ๋ฒ•์€ ์ด๋Ÿฌํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์„ ๋งŒ์กฑํ•  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ตœ๊ทผ์— sparse processing๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์€ ํ‘œ๋ณธ ์ถ”์ถœ, ๊ฐ์ง€, ์••์ถ•, ํ‰๊ฐ€ ๋ฐ ํƒ์ง€๋ฅผ ํฌํ•จํ•œ ๊ธฐ์กด์˜ ์ •๋ณด ์ฒ˜๋ฆฌ์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ๋Œ€์ฒด๊ธฐ์ˆ ๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ง€๋‚œ 10๋…„ ๋™์•ˆ compressed sensing (CS)๊ธฐ๋ฒ•์€ ์˜๋ฃŒ์˜์ƒ, ๊ธฐ๊ณ„ํ•™์Šต, ํƒ์ง€, ์ปดํ“จํ„ฐ ๊ณผํ•™, ํ†ต๊ณ„ ๋ฐ ๊ธฐํƒ€ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ๋น ๋ฅด๊ฒŒ ํ™•์‚ฐ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์‹ ํ˜ธ์˜ ํฌ์†Œ์„ฑ(sparsity)๋ฅผ ์ด์šฉํ•˜๋Š” CS ๊ธฐ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๋ฌด์„  ํ†ต์‹ ์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ฃผ๋ชฉํ• ๋งŒํ•œ ์˜ˆ๋กœ๋Š” ์ฑ„๋„ ์ถ”์ •, ๊ฐ„์„ญ ์ œ๊ฑฐ, ๊ฐ๋„ ์ถ”์ •, ๋ฐ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ฐ์ง€๊ฐ€ ์žˆ์œผ๋ฉฐ ํ˜„์žฌ๊นŒ์ง€ ์—ฐ๊ตฌ๋Š” ์ฃผ์–ด์ง„ ์‹ ํ˜ธ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ณธ๋ž˜์˜ ํฌ์†Œ์„ฑ์— ์ฃผ๋ชฉํ•˜์˜€์œผ๋‚˜ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์˜ ์ ‘๊ทผ ๋ฐฉ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ ์ธ์œ„์ ์œผ๋กœ ์„ค๊ณ„๋œ ํฌ์†Œ์„ฑ์„ ์ด์šฉํ•˜์—ฌ ํ†ต์‹  ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ์„  ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์šด๋งํฌ ์ „์†ก์—์„œ ํฌ์†Œ ์‹ ํ˜ธ ๋งคํ•‘์„ ํ†ตํ•œ ๋ฐ์ดํ„ฐ ์ „์†ก ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ ์งง์€ ํŒจํ‚ท (short packet) ์ „์†ก์— ์ ํ•ฉํ•œ CS ์ ‘๊ทผ๋ฒ•์„ ํ™œ์šฉํ•˜๋Š” ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ์ˆ ์ธ ํฌ์†Œ๋ฒกํ„ฐ์ฝ”๋”ฉ (sparse vector coding, SVC)์€ ๋ฐ์ดํ„ฐ ์ •๋ณด๊ฐ€ ์ธ๊ณต์ ์ธ ํฌ์†Œ๋ฒกํ„ฐ์˜ nonzero element์˜ ์œ„์น˜์— ๋งคํ•‘ํ•˜์—ฌ ์ „์†ก๋œ ๋ฐ์ดํ„ฐ ํŒจํ‚ท์€ ํฌ์†Œ๋ฒกํ„ฐ์˜ 0์ด ์•„๋‹Œ ์œ„์น˜๋ฅผ ์‹๋ณ„ํ•จ์œผ๋กœ ์›์‹ ํ˜ธ ๋ณต์›์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ถ„์„๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” SVC ๊ธฐ๋ฒ•์˜ ํŒจํ‚ท ์˜ค๋ฅ˜๋ฅ ์€ ultra-reliable and low latency communications (URLLC) ์„œ๋น„์Šค๋ฅผ ์ง€์›์„ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋Š” ์ฑ„๋„์ฝ”๋”ฉ๋ฐฉ์‹๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์€ SVC๊ธฐ์ˆ ์„ ๋‹ค์Œ์˜ ์„ธ๊ฐ€์ง€ ์˜์—ญ์œผ๋กœ ํ™•์žฅํ•˜์˜€๋‹ค. ์ฒซ์งธ๋กœ, ์—ฌ๋Ÿฌ ๊ฐœ์˜ SVC ๊ธฐ๋ฐ˜ ํŒจํ‚ท์„ ๋™์ผํ•œ ์ž์›์— ๊ฒน์น˜๊ฒŒ ์ „์†กํ•จ์œผ๋กœ ์ƒํ–ฅ๋งํฌ์—์„œ ๋Œ€๊ทœ๋ชจ ์ „์†ก์„ ์ง€์›ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ค‘์ฒฉ๋œ ํฌ์†Œ๋ฒกํ„ฐ๋ฅผ ๋‹ค์ค‘์‚ฌ์šฉ์ž CS ๋””์ฝ”๋”ฉ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฑ„๋„ ๊ฐ„์„ญ์— ๊ฐ•์ธํ•œ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๊ณ  ๋น„์ง๊ต ๋‹ค์ค‘ ์ ‘์† (NOMA) ๋ฐฉ์‹๊ณผ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๋‘˜์งธ๋กœ, SVC ๊ธฐ์ˆ ์ด ํฌ์†Œ ๋ฒกํ„ฐ์˜ support๋งŒ์„ ์‹๋ณ„ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ด์šฉํ•˜์—ฌ ํŒŒ์ผ๋Ÿฟ ์ „์†ก์ด ํ•„์š”์—†๋Š” pilotless-SVC ์ „์†ก ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฑ„๋„ ์ •๋ณด๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ์—๋„ ํฌ์†Œ ๋ฒกํ„ฐ์˜ support์˜ ํฌ๊ธฐ๋Š” ์ฑ„๋„์˜ ํฌ๊ธฐ์— ๋น„๋ก€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— pilot์—†์ด ๋ณต์›์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์…‹์งธ๋กœ, ํฌ์†Œ๋ฒกํ„ฐ์˜ support์˜ ํฌ๊ธฐ์— ์ถ”๊ฐ€ ์ •๋ณด๋ฅผ ์ „์†กํ•จ์œผ๋กœ ๋ณต์› ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ ์‹œํ‚ค๋Š” enhanced SVC (E-SVC)๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ E-SVC ์ „์†ก ๋ฐฉ์‹์˜ ํ•ต์‹ฌ ์•„๋””๋””์–ด๋Š” ์งง์€ ํŒจํ‚ท์„ ์ „์†ก๋˜๋Š” ์ •๋ณด๋ฅผ ํฌ์†Œ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ  ์ •๋ณด ๋ณต์›์„ ๋ณด์กฐํ•˜๋Š” ์ถ”๊ฐ€ ์ •๋ณด๋ฅผ ํฌ์†Œ ๋ฒกํ„ฐ์˜ ํฌ๊ธฐ (magnitude)๋กœ ๋งคํ•‘ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, SVC ๊ธฐ์ˆ ์„ ํŒŒ์ผ๋Ÿฟ ์ „์†ก์— ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŠนํžˆ, ์ฑ„๋„ ์ถ”์ •์„ ์œ„ํ•ด ์ฑ„๋„ ์ž„ํŽ„์Šค ์‘๋‹ต์˜ ์‹ ํ˜ธ๋ฅผ ํฌ์†Œํ™”ํ•˜๋Š” ํ”„๋ฆฌ์ฝ”๋”ฉ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ์„ ํ”„๋กœ์ฝ”๋”ฉ ์—†์ด ์ „์†ก๋˜๋Š” ๊ธฐ์กด์˜ ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ์ œ์•ˆ๋œ ๊ธฐ์ˆ ์—์„œ๋Š” ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ๋ฅผ ๋น”ํฌ๋ฐํ•˜์—ฌ ์ „์†กํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ๊ธฐ์ง€๊ตญ์—์„œ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ฑ„๋„ ์‘๋‹ต์˜ 0์ด ์•„๋‹Œ ์š”์†Œ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์‹œ๊ฐ„ ์˜์—ญ ํฌ์†Œ ํ”„๋ฆฌ์ฝ”๋”ฉ์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋” ์ ํ™•ํ•œ ์ฑ„๋„ ์ถ”์ •์„ ๊ฐ€๋Šฅํ•˜๋ฉฐ ๋” ์ ์€ ํŒŒ์ผ๋Ÿฟ ์˜ค๋ฒ„ํ—ค๋“œ๋กœ ์ฑ„๋„ ์ถ”์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค.Abstract i Contents iv List of Tables viii List of Figures ix 1 INTRODUCTION 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Three Key Services in 5G systems . . . . . . . . . . . . . . . 2 1.1.2 Sparse Processing in Wireless Communications . . . . . . . . 4 1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . 7 1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Sparse Vector Coding for Downlink Ultra-reliable and Low Latency Communications 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 URLLC Service Requirements . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Ultra-High Reliability . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Coexistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 URLLC Physical Layer in 5G NR . . . . . . . . . . . . . . . . . . . 18 2.3.1 Packet Structure . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Frame Structure and Latency-sensitive Scheduling Schemes . 20 2.3.3 Solutions to the Coexistence Problem . . . . . . . . . . . . . 22 2.4 Short-sized Packet in LTE-Advanced Downlink . . . . . . . . . . . . 24 2.5 Sparse Vector Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 SVC Encoding and Transmission . . . . . . . . . . . . . . . 25 2.5.2 SVC Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.3 Identification of False Alarm . . . . . . . . . . . . . . . . . . 33 2.6 SVC Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 36 2.7 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.1 Codebook Design . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.2 High-order Modulation . . . . . . . . . . . . . . . . . . . . . 49 2.7.3 Diversity Transmission . . . . . . . . . . . . . . . . . . . . . 50 2.7.4 SVC without Pilot . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.5 Threshold to Prevent False Alarm Event . . . . . . . . . . . . 51 2.8 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 52 2.8.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 53 2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3 Sparse Vector Coding for Uplink Massive Machine-type Communications 59 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Uplink NOMA transmission for mMTC . . . . . . . . . . . . . . . . 61 3.3 Sparse Vector Coding based NOMA for mMTC . . . . . . . . . . . . 63 3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.2 Joint Multiuser Decoding . . . . . . . . . . . . . . . . . . . . 66 3.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 68 3.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Pilot-less Sparse Vector Coding for Short Packet Transmission 72 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Pilot-less Sparse Vector Coding Processing . . . . . . . . . . . . . . 75 4.2.1 SVC Processing with Pilot Symbols . . . . . . . . . . . . . . 75 4.2.2 Pilot-less SVC . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.3 PL-SVC Decoding in Multiple Basestation Antennas . . . . . 78 4.3 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Joint Analog and Quantized Feedback via Sparse Vector Coding 84 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 System Model for Joint Spase Vector Coding . . . . . . . . . . . . . 86 5.3 Sparse Recovery Algorithm and Performance Analysis . . . . . . . . 90 5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4.1 Linear Interpolation of Sensing Information . . . . . . . . . . 96 5.4.2 Linear Combined Feedback . . . . . . . . . . . . . . . . . . 96 5.4.3 One-shot Packet Transmission . . . . . . . . . . . . . . . . . 96 5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 98 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Sparse Beamforming for Enhanced Mobile Broadband Communications 101 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.1.1 Increase the number of transmit antennas . . . . . . . . . . . 102 6.1.2 2D active antenna system (AAS) . . . . . . . . . . . . . . . . 103 6.1.3 3D channel environment . . . . . . . . . . . . . . . . . . . . 104 6.1.4 RS transmission for CSI acquisition . . . . . . . . . . . . . . 106 6.2 System Design and Standardization of FD-MIMO Systems . . . . . . 107 6.2.1 Deployment scenarios . . . . . . . . . . . . . . . . . . . . . 108 6.2.2 Antenna configurations . . . . . . . . . . . . . . . . . . . . . 108 6.2.3 TXRU architectures . . . . . . . . . . . . . . . . . . . . . . 109 6.2.4 New CSI-RS transmission strategy . . . . . . . . . . . . . . . 112 6.2.5 CSI feedback mechanisms for FD-MIMO systems . . . . . . 114 6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.1 Basic System Model . . . . . . . . . . . . . . . . . . . . . . 116 6.3.2 Beamformed Pilot Transmission . . . . . . . . . . . . . . . . 117 6.4 Sparsification of Pilot Beamforming . . . . . . . . . . . . . . . . . . 118 6.4.1 Time-domain System Model without Pilot Beamforming . . . 119 6.4.2 Pilot Beamforming . . . . . . . . . . . . . . . . . . . . . . . 120 6.5 Channel Estimation of Beamformed Pilots . . . . . . . . . . . . . . . 124 6.5.1 Recovery using Multiple Measurement Vector . . . . . . . . . 124 6.5.2 MSE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.6 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 130 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7 Conclusion 136 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 139 Abstract (In Korean) 152Docto
    • โ€ฆ
    corecore