56,577 research outputs found

    Correlated Sources In Distributed Networks - Data Transmission, Common Information Characterization and Inferencing

    Get PDF
    Correlation is often present among observations in a distributed system. This thesis deals with various design issues when correlated data are observed at distributed terminals, including: communicating correlated sources over interference channels, characterizing the common information among dependent random variables, and testing the presence of dependence among observations. It is well known that separated source and channel coding is optimal for point-to-point communication. However, this is not the case for multi-terminal communications. In this thesis, we study the problem of communicating correlated sources over interference channels (IC), for both the lossless and the lossy case. For lossless case, a sufficient condition is found using the technique of random source partition and correlation preserving codeword generation. The sufficient condition reduces to the Han-Kobayashi achievable rate region for IC with independent observations. Moreover, the proposed coding scheme is optimal for transmitting a special correlated sources over a class of deterministic interference channels. We then study the general case of lossy transmission of two correlated sources over a two-user discrete memoryless interference channel (DMIC). An achievable distortion region is obtained and Gaussian examples are studied. The second topic is the generalization of Wyner\u27s definition of common information of a pair of random variables to that of N random variables. Coding theorems are obtained to show that the same operational meanings for the common information of two random variables apply to that of N random variables. We establish a monotone property of Wyner\u27s common information which is in contrast to other notions of the common information, specifically Shannon\u27s mutual information and G\u27{a}cs and K {o}rner\u27s common randomness. Later, we extend Wyner\u27s common information to that of continuous random variables and provide an operational meaning using the Gray-Wyner network with lossy source coding. We show that Wyner\u27s common information equals the smallest common message rate when the total rate is arbitrarily close to the rate-distortion function with joint decoding. Finally, we consider the problem of distributed test of statistical independence under communication constraints. Focusing on the Gaussian case because of its tractability, we study in this thesis the characteristics of optimal scalar quantizers for distributed test of independence where the optimality is both in the finite sample regime and in the asymptotic regime

    Bandwidth efficient multi-station wireless streaming based on complete complementary sequences

    Get PDF
    Data streaming from multiple base stations to a client is recognized as a robust technique for multimedia streaming. However the resulting transmission in parallel over wireless channels poses serious challenges, especially multiple access interference, multipath fading, noise effects and synchronization. Spread spectrum techniques seem the obvious choice to mitigate these effects, but at the cost of increased bandwidth requirements. This paper proposes a solution that exploits complete complementary spectrum spreading and data compression techniques jointly to resolve the communication challenges whilst ensuring efficient use of spectrum and acceptable bit error rate. Our proposed spreading scheme reduces the required transmission bandwidth by exploiting correlation among information present at multiple base stations. Results obtained show 1.75 Mchip/sec (or 25%) reduction in transmission rate, with only up to 6 dB loss in frequency-selective channel compared to a straightforward solution based solely on complete complementary spectrum spreading

    Joint Source-Channel Coding over a Fading Multiple Access Channel with Partial Channel State Information

    Full text link
    In this paper we address the problem of transmission of correlated sources over a fast fading multiple access channel (MAC) with partial channel state information available at both the encoders and the decoder. We provide sufficient conditions for transmission with given distortions. Next these conditions are specialized to a Gaussian MAC (GMAC). We provide the optimal power allocation strategy and compare the strategy with various levels of channel state information. Keywords: Fading MAC, Power allocation, Partial channel state information, Correlated sources.Comment: 7 Pages, 3 figures. To Appear in IEEE GLOBECOM, 200

    Energy-Distortion Tradeoff with Multiple Sources and Feedback

    Get PDF
    Abstract The energy-distortion tradeoff for lossy transmission of sources over multi-user networks is studied. The energydistortion function E(D) is de�ned as the minimum energy required to transmit a source to the receiver within the target distortion D, when there is no restriction on the number of channel uses per source sample. For point-to-point channels, E(D) is shown to be equal to the product of the minimum energy per bit Ebmin and the rate distortion function R(D), indicating the optimality of source-channel separation in this setting. It is shown that the optimal E(D) can also be achieved by the Schalkwijk Kailath (SK) scheme, as well as separate coding, in the presence of perfect channel output feedback. Then, it is shown that the optimality of separation in terms of E(D) does not extend to multi-user networks. The scenario with two encoders observing correlated Gaussian sources in which the encoders communicate to the receiver over a Gaussian multipleaccess channel (MAC) with perfect channel output feedback is studied. First a lower bound on E(D) is provided and compared against two upper bounds achievable by separation and an uncoded SK type scheme, respectively. Even though neither of these achievable schemes meets the lower bound in general, it is shown that their energy requirements lie within a constant gap of E(D) in the low distortion regime, for which the energy requirement grows unbounded. It is shown that the SK based scheme outperforms the separation based scheme in certain scenarios, which establishes the sub-optimality of separation in this multi-user setting. I

    Spatially-Coupled LDPC Codes for Decode-and-Forward Relaying of Two Correlated Sources over the BEC

    Get PDF
    We present a decode-and-forward transmission scheme based on spatially-coupled low-density parity-check (SC-LDPC) codes for a network consisting of two (possibly correlated) sources, one relay, and one destination. The links between the nodes are modeled as binary erasure channels. Joint source-channel coding with joint channel decoding is used to exploit the correlation. The relay performs network coding. We derive analytical bounds on the achievable rates for the binary erasure time-division multiple-access relay channel with correlated sources. We then design bilayer SC-LDPC codes and analyze their asymptotic performance for this scenario. We prove analytically that the proposed coding scheme achieves the theoretical limit for symmetric channel conditions and uncorrelated sources. Using density evolution, we furthermore demonstrate that our scheme approaches the theoretical limit also for non-symmetric channel conditions and when the sources are correlated, and we observe the threshold saturation effect that is typical for spatially-coupled systems. Finally, we give simulation results for large block lengths, which validate the DE analysis.Comment: IEEE Transactions on Communications, to appea

    The Three-User Finite-Field Multi-Way Relay Channel with Correlated Sources

    Full text link
    This paper studies the three-user finite-field multi-way relay channel, where the users exchange messages via a relay. The messages are arbitrarily correlated, and the finite-field channel is linear and is subject to additive noise of arbitrary distribution. The problem is to determine the minimum achievable source-channel rate, defined as channel uses per source symbol needed for reliable communication. We combine Slepian-Wolf source coding and functional-decode-forward channel coding to obtain the solution for two classes of source and channel combinations. Furthermore, for correlated sources that have their common information equal their mutual information, we propose a new coding scheme to achieve the minimum source-channel rate.Comment: Author's final version (accepted and to appear in IEEE Transactions on Communications
    corecore