55,185 research outputs found

    Visible Light Communication

    Get PDF
    In this paper, a visible light communications system is proposed that employs wavelength division multiplexing, to transmit multiple data streams from different data sources simultaneously and transmission of audio song and also an image was demonstrated by using LED light. Not limit to this, multiple source signals simultaneously in different frequency bands were transmitted through the LED circuitry, and the signals were recovered successfully. This demonstrates the feasibility studies of our design in signals broadcasting

    Backward Compatible Spatialized Teleconferencing based on Squeezed Recordings

    Get PDF
    Commercial teleconferencing systems currently available, although offering sophisticated video stimulus of the remote participants, commonly employ only mono or stereo audio playback for the user. However, in teleconferencing applications where there are multiple participants at multiple sites, spatializing the audio reproduced at each site (using headphones or loudspeakers) to assist listeners to distinguish between participating speakers can significantly improve the meeting experience (Baldis, 2001; Evans et al., 2000; Ward & Elko 1999; Kilgore et al., 2003; Wrigley et al., 2009; James & Hawksford, 2008). An example is Vocal Village (Kilgore et al., 2003), which uses online avatars to co-locate remote participants over the Internet in virtual space with audio spatialized over headphones (Kilgore, et al., 2003). This system adds speaker location cues to monaural speech to create a user manipulable soundfield that matches the avatar’s position in the virtual space. Giving participants the freedom to manipulate the acoustic location of other participants in the rendered sound scene that they experience has been shown to provide for improved multitasking performance (Wrigley et al., 2009). A system for multiparty teleconferencing requires firstly a stage for recording speech from multiple participants at each site. These signals then need to be compressed to allow for efficient transmission of the spatial speech. One approach is to utilise close-talking microphones to record each participant (e.g. lapel microphones), and then encode each speech signal separately prior to transmission (James & Hawksford, 2008). Alternatively, for increased flexibility, a microphone array located at a central point on, say, a meeting table can be used to generate a multichannel recording of the meeting speech A microphone array approach is adopted in this work and allows for processing of the recordings to identify relative spatial locations of the sources as well as multichannel speech enhancement techniques to improve the quality of recordings in noisy environments. For efficient transmission of the recorded signals, the approach also requires a multichannel compression technique suitable to spatially recorded speech signals

    Tissue-conducted spatial sound fields

    Get PDF
    We describe experiments using multiple cranial transducers to achieve auditory spatial perceptual impressions via bone (BC) and tissue conduction (TC), bypassing the peripheral hearing apparatus. This could be useful in cases of peripheral hearing damage or where ear-occlusion is undesirable. Previous work (e.g. Stanley and Walker 2006, MacDonald and Letowski 2006)1,2 indicated robust lateralization is feasible via tissue conduction. We have utilized discrete signals, stereo and first order ambisonics to investigate control of externalization, range, direction in azimuth and elevation, movement and spaciousness. Early results indicate robust and coherent effects. Current technological implementations are presented and potential development paths discussed

    Hearing Without Ears

    Get PDF
    We report on on-going work investigating the feasibility of using tissue conduction to evince auditory spatial perception. Early results indicate that it is possible to coherently control externalization, range, directionality (including elevation), movement and some sense of spaciousness without presenting acoustic signals to the outer ear. Signal control techniques so far have utilised discrete signal feeds, stereo and 1st order ambisonic hierarchies. Some deficiencies in frontal externalization have been observed. We conclude that, whilst the putative components of the head related transfer function are absent, empirical tests indicate that coherent equivalents are perceptually utilisable. Some implications for perceptual theory and technological implementations are discussed along with potential practical applications and future lines of enquiry

    A Novel Combined System of Direction Estimation and Sound Zooming of Multiple Speakers

    Get PDF
    This article presents a new system for estimation the direction of multiple speakers and zooming the sound of one of them at a time. The proposed system is a combination of two levels; namely, sound source direction estimation, and acoustic zooming. The sound source direction estimation uses so-called the energetic analysis method for estimation the direction of multiple speakers, whereas the acoustic zooming is based on modifying the parameters of the directional audio coding (DirAC) in order to zoom the sound of a selected speaker among the others. Both listening tests and objective assessments are performed to evaluate this system using different time-frequency transforms

    System Support for Bandwidth Management and Content Adaptation in Internet Applications

    Full text link
    This paper describes the implementation and evaluation of an operating system module, the Congestion Manager (CM), which provides integrated network flow management and exports a convenient programming interface that allows applications to be notified of, and adapt to, changing network conditions. We describe the API by which applications interface with the CM, and the architectural considerations that factored into the design. To evaluate the architecture and API, we describe our implementations of TCP; a streaming layered audio/video application; and an interactive audio application using the CM, and show that they achieve adaptive behavior without incurring much end-system overhead. All flows including TCP benefit from the sharing of congestion information, and applications are able to incorporate new functionality such as congestion control and adaptive behavior.Comment: 14 pages, appeared in OSDI 200

    End to End Deep Neural Network Frequency Demodulation of Speech Signals

    Full text link
    Frequency modulation (FM) is a form of radio broadcasting which is widely used nowadays and has been for almost a century. We suggest a software-defined-radio (SDR) receiver for FM demodulation that adopts an end-to-end learning based approach and utilizes the prior information of transmitted speech message in the demodulation process. The receiver detects and enhances speech from the in-phase and quadrature components of its base band version. The new system yields high performance detection for both acoustical disturbances, and communication channel noise and is foreseen to out-perform the established methods for low signal to noise ratio (SNR) conditions in both mean square error and in perceptual evaluation of speech quality score

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure
    corecore