2,325 research outputs found

    Impact of Equipment Failures and Wind Correlation on Generation Expansion Planning

    Full text link
    Generation expansion planning has become a complex problem within a deregulated electricity market environment due to all the uncertainties affecting the profitability of a given investment. Current expansion models usually overlook some of these uncertainties in order to reduce the computational burden. In this paper, we raise a flag on the importance of both equipment failures (units and lines) and wind power correlation on generation expansion decisions. For this purpose, we use a bilevel stochastic optimization problem, which models the sequential and noncooperative game between the generating company (GENCO) and the system operator. The upper-level problem maximizes the GENCO's expected profit, while the lower-level problem simulates an hourly market-clearing procedure, through which LMPs are determined. The uncertainty pertaining to failures and wind power correlation are characterized by a scenario set, and their impact on generation expansion decisions are quantified and discussed for a 24-bus power system

    A World-Class University-Industry Consortium for Wind Energy Research, Education, and Workforce Development: Final Technical Report

    Get PDF
    During the two-year project period, the consortium members have developed control algorithms for enhancing the reliability of wind turbine components. The consortium members have developed advanced operation and planning tools for accommodating the high penetration of variable wind energy. The consortium members have developed extensive education and research programs for educating the stakeholders on critical issues related to the wind energy research and development. In summary, The Consortium procured one utility-grade wind unit and two small wind units. Specifically, the Consortium procured a 1.5MW GE wind unit by working with the world leading wind energy developer, Invenergy, which is headquartered in Chicago, in September 2010. The Consortium also installed advanced instrumentation on the turbine and performed relevant turbine reliability studies. The site for the wind unit is InvenergyÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs Grand Ridge wind farmin Illinois. The Consortium, by working with Viryd Technologies, installed an 8kW Viryd wind unit (the Lab Unit) at an engineering lab at IIT in September 2010 and an 8kW Viryd wind unit (the Field Unit) at the Stuart Field on IITÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs main campus in July 2011, and performed relevant turbine reliability studies. The operation of the Field Unit is also monitored by the Phasor Measurement Unit (PMU) in the nearby Stuart Building. The Consortium commemorated the installations at the July 20, 2011 ribbon-cutting ceremony. The ConsortiumÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs researches on turbine reliability included (1) Predictive Analytics to Improve Wind Turbine Reliability; (2) Improve Wind Turbine Power Output and Reduce Dynamic Stress Loading Through Advanced Wind Sensing Technology; (3) Use High Magnetic Density Turbine Generator as Non-rare Earth Power Dense Alternative; (4) Survivable Operation of Three Phase AC Drives in Wind Generator Systems; (5) Localization of Wind Turbine Noise Sources Using a Compact Microphone Array; (6) Wind Turbine Acoustics - Numerical Studies; and (7) Performance of Wind Turbines in Rainy Conditions. The ConsortiumÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs researches on wind integration included (1) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (2) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection; (3) Integration of Non-dispatchable Resources in Electricity Markets; (4) Integration of Wind Unit with Microgrid. The ConsortiumÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs education and outreach activities on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development; (3) Wind Energy Outreach

    Co-Optimization of Gas-Electricity Integrated Energy Systems Under Uncertainties

    Get PDF
    In the United States, natural gas-fired generators have gained increasing popularity in recent years due to low fuel cost and emission, as well as the needed large gas reserves. Consequently, it is worthwhile to consider the high interdependency between the gas and electricity networks. In this dissertation, several co-optimization models for the optimal operation and planning of gas-electricity integrated energy systems (IES) are proposed and investigated considering uncertainties from wind power and load demands. For the coordinated operation of gas-electricity IES: 1) an interval optimization based coordinated operating strategy for the gas-electricity IES is proposed to improve the overall system energy efficiency and optimize the energy flow. The gas and electricity infrastructures are modeled in detail and their operation constraints are fully considered. Then, a demand response program is incorporated into the optimization model, and its effects on the IES operation are investigated. Interval optimization is applied to address wind power uncertainty in IES. 2) a stochastic optimal operating strategy for gas-electricity IES is proposed considering N-1 contingencies in both gas and electricity networks. Since gas pipeline contingencies limit the fuel deliverability to gas-fired units, N-1 contingencies in both gas and electricity networks are considered to ensure that the system operation is able to sustain any possible power transmission or gas pipeline failure. Moreover, wind power uncertainty is addressed by stochastic programming. 3) a robust scheduling model is proposed for gas-electricity IES with uncertain wind power considering both gas and electricity N-1 contingencies. The proposed method is robust against wind power uncertainty to ensure that the system can sustain possible N-1 contingency event of gas pipeline or power transmission. Case studies demonstrate the effectiveness of the proposed models. For the co-optimization planning of gas-electricity IES: a two-stage robust optimization model is proposed for expansion co-planning of gas-electricity IES. The proposed model is solved by the column and constraint generation (C&CG) algorithm. The locations and capacities of new gas-fired generators, power transmission lines, and gas pipelines are optimally determined, which is robust against the uncertainties from electric and gas load growth as well as wind power

    Grid integration of variable renewable energies in Ghana: assessment of the impact on system stability

    Get PDF
    This research analyses the impact of renewable energies (RE) generation in Ghana’s national interconnected transmission system (NITS) and how its stability is affected. Integrating RE, particularly solar and wind in Ghana’s power system has been discussed at the national level with the intention to diversify the energy mix and reduce the dependency on thermal energy. RE integration introduces operational and infrastructural challenges in Ghana’s network, to which novel measures are required. Using the DIgSILENT PowerFactory simulation tool and MATLAB, simulation scenarios are created to capture diverse network conditions including different RE penetration levels, load demand and infrastructural expansion for three separate years. The ‘optimum’ penetration level of RE in the NITS considering voltage and loading limits is also identified using optimization techniques. The simulation results show that the target scenario is the most prone to both static and dynamic voltage instability. The transient stability analysis however reveals the post-target scenario to be unstable. Furthermore, methods of optimization are used to determine the reactive power deficient nodes in the NITS, which serve as the basis for the stability enhancement measures. The simulations and analysis additionally indicate that implementing the proposed measures indeed enhances the stability of the NITS. Finally, this research shows that RE integration is ‘technically’ feasible in Ghana if the required network reinforcements and operational changes are accordingly considered

    The Role of Power Electronics in Modern Energy System Integration

    Get PDF

    Grid Strength Assessment Trough Q-V Modal Analysis and Maximum Loadability of a Wind-Dominated Power System Using P-Q Regions

    Get PDF
    Climate change is a menace to the existence of the world and policymakers are trying totackle this phenomenon by deploying large-scale wind farms into their grids. Among them, wind energy shows a promising future to substitute the traditional power plants. However, the deployment of these wind farms into the grid is not a panacea that does not pose any challenges to the grid operators. Keeping the power system voltage stable while considering the strength of the transmission grid is among the major challenges facing by the transmission system operators. Amid normal operation and fault conditions, wind farms should help the grid in reactive power supply according to the grid codes to ride through the fault. In doing so, during fault conditions or heavy loading conditions, the voltage of the power system will not deteriorate. A wind farm, most of the time, is incapable to meet the grid codes requirements without reactive power support. For the compensation of the reactive power deficit, FACTS devices are extensively used. The most popular FACTS devices used by electric utilities are, STATCOM, SVC, SSSC, TCSC, and UPFC. In this work, attention is given to the amelioration of transient stability in wind-dominated power systems via STATCOM and SSSC. Furthermore, a systematic approach to locate large wind power plants to an existing transmission grid is developed by combining the QV-modal analysis, Q-V curves, and P-Q method. The steady-state voltage stability at different wind power penetration levels is investigated while considering the weakest and the strongest region of the power system. The P-Q region method is used to size the wind farm in each scenario. The reliability of the system is verified from the worst contingencies with the wind farm connected at the most vulnerable bus of the system in reactive power capability. The system considered for testing is the modified IEEE 14 bus system

    Compressed Air Energy Storage: Modelling & Applications for Sustainable Electric Power Systems

    Get PDF
    With the increasing concerns about the climate change and depletion of non-renewable energy sources, there has been a growing emphasis on the deployment of renewable energy sources in electric power systems. However, due to inherent stochasticity of renewable energy sources, this transition toward sustainable electric power systems creates serious challenges for the reliable and safe operation of such systems. Large-scale energy storage systems are considered to be key enablers for integrating increasing penetration of renewable energy sources by adding flexibility to the electric power systems. This thesis investigates compressed air energy storage (CAES) as a cost-effective large-scale energy storage technology that can support the development and realization of sustainable electric power systems. Firstly, this thesis develops a novel planning framework of CAES to consider its benefits from an electric utility’s perspective. The proposed framework is used to investigate different applications of CAES which depend upon the location and size of CAES in an electric power system. The proposed framework also considers the option of installing a dynamic thermal line rating (DTLR) system which measures real-time, maximum power ratings of transmission lines. Next, this thesis examines the existing models of CAES employed in electric power system studies and proposes a novel thermodynamic-based model of CAES which is more accurate yet suitable for electric power system studies. The importance and significance of the proposed model is established through its application in the problem of optimal scheduling of CAES in electricity markets. It is demonstrated that through the proposed model, the operator of a CAES can submit bids in electricity markets without violating any of the technical constraints of CAES. Lastly, this thesis inspects the reliability benefits of CAES to an electric power system. In this part of the thesis, a four-state reliability model of CAES is developed. The reliability model of CAES is then applied to evaluate the reliability of a wind-integrated electric power system. It is revealed that CAES can significantly improve the reliability indices of an electric power system. Moreover, it is shown that this improvement depends on the location and size of CAES
    • …
    corecore