613 research outputs found

    The impact of mobility models on the performance of mobile Ad Hoc network routing protocol

    Get PDF
    A mobility model represents nodes distribution and movement over the network. Several research works have shown that a selection of mobility model can affect the outcome of routing performance simulation in Mobile Ad Hoc Networks. Thus, a routing protocol may only be effective in a particular mobility model or scenario but performs inferiorly in another. As a result, analyses of routing protocol performance are often based on inadequate information leading to inaccurate argument and conclusion. In this paper, three different mobility models have been selected, where each of them is highly distinctive in terms of nodes movement behavior. In addition, a new measurement technique called probability of route connectivity is introduced. The technique is used to quantify the success rate of route established by a routing protocol. Extensive simulation runs are done and results are compared between each mobility model

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa

    Energy Efficient Stable Cluster Scheme for MANET

    Get PDF
    In Mobile Ad-hoc Networks, cluster based routing protocol(CBRP) is robustly used since they combine the advantages of Reactive and Proctive routing protocols. And they have less routing overhead and less end-to-end delay compared to Reactive and Proctive routing protocols respectively. Energy source for a mobile node is limited, and even difficult to recharge. The life time of the network depends on the life time of the nodes. So we propose different shemes to have energy efficient stable clusters. By using stable clustering algorithm to avoid frequent reclustering, efficient clustering scheme to minimize overlapping clusters, and allow nodes to save their energy by changing their mode to sleep mode

    Extension of dynamic source routing protocol in mobile ad hoc network

    Get PDF
    In a large dynamic network, data can be copied anywhere to make it fault tolerant and easy accessed but there must be an efficient protocol to manage the replicas and make sure the data is consistent and high in availability with a low communication cost. In this paper, we introduced a new protocol, named Diagonal Replication in Mesh (DRM) for data replica control protocol for a large dynamic network by using quorum and voting techniques to improve the availability and the communication cost because quorum techniques reduce the number of copies involved in reading or writing data.The protocol of DRM replicates data for large dynamic network by putting the protocol in a logical mesh structure and access consistent data by ensuring the quorum not to have a nonempty intersection quorum.To evaluate our protocol, we developed a simulation model in Java.Our results proved that DRM improves the performance of the response time compare to Three Dimensional Grid structure Protocol (TDGS)

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    A comparative analysis for Detecting Uncertain Deterioration of Node Energy in MANET through Trust Based Solution

    Get PDF
    Energy is consumed in MANET during the transmission and reception of data, propagation of control packets, retransmission and overhearing. We concentrate in reducing the energy consumption during the transmission and reception of data. Each node in MANET transmits data with the maximum energy regardless of the distance between the nodes. Also the mobile nodes expend some energy in transmission and reception of data. We have utilized the metrics received signal strength, link quality and the distance between the nodes to compute the energy required to transmit the data from a node to its neighboring node. The energy computed is involved in the selection of the optimal path which requires minimum energy to route the data from source to destination. Nodes within an ad hoc network generally rely on batteries (or exhaustive energy sources) for energy. Since these energy sources have a limited lifetime, power availability is one of the most important constraints for the operation of the ad hoc network
    corecore