288 research outputs found

    Data Transmission in the Presence of Limited Channel State Information Feedback

    Get PDF

    Distortion Exponent in MIMO Channels with Feedback

    Full text link
    The transmission of a Gaussian source over a block-fading multiple antenna channel in the presence of a feedback link is considered. The feedback link is assumed to be an error and delay free link of capacity 1 bit per channel use. Under the short-term power constraint, the optimal exponential behavior of the end-to-end average distortion is characterized for all source-channel bandwidth ratios. It is shown that the optimal transmission strategy is successive refinement source coding followed by progressive transmission over the channel, in which the channel block is allocated dynamically among the layers based on the channel state using the feedback link as an instantaneous automatic repeat request (ARQ) signal.Comment: Presented at the IEEE Information Theory Workshop (ITW), Taormina, Italy, Oct. 200

    On the Performance of MIMO-ARQ Systems with Channel State Information at the Receiver

    Get PDF
    This paper investigates the performance of multiple-input-multiple-output (MIMO) systems in the presence of automatic repeat request (ARQ) feedback. We show that, for a large range of performance metrics, the data transmission efficiency of the ARQ schemes is determined by a set of parameters which are scheme-dependent and not metric-dependent. Then, the results are used to study different aspects of MIMO-ARQ such as the effect of nonlinear power amplifiers, large-scale MIMO-ARQ, adaptive power allocation and different data communication models. The results, which are valid for various forward and feedback channel models, show the efficiency of the MIMO-ARQ techniques in different conditions

    On the Design of Artificial-Noise-Aided Secure Multi-Antenna Transmission in Slow Fading Channels

    Full text link
    In this paper, we investigate the design of artificial-noise-aided secure multi-antenna transmission in slow fading channels. The primary design concerns include the transmit power allocation and the rate parameters of the wiretap code. We consider two scenarios with different complexity levels: i) the design parameters are chosen to be fixed for all transmissions, ii) they are adaptively adjusted based on the instantaneous channel feedback from the intended receiver. In both scenarios, we provide explicit design solutions for achieving the maximal throughput subject to a secrecy constraint, given by a maximum allowable secrecy outage probability. We then derive accurate approximations for the maximal throughput in both scenarios in the high signal-to-noise ratio region, and give new insights into the additional power cost for achieving a higher security level, whilst maintaining a specified target throughput. In the end, the throughput gain of adaptive transmission over non-adaptive transmission is also quantified and analyzed.Comment: to appear in IEEE Transactions on Vehicular Technolog
    • …
    corecore