66,499 research outputs found
Surface Curvature Effects on Reflectance from Translucent Materials
Most of the physically based techniques for rendering translucent objects use
the diffusion theory of light scattering in turbid media. The widely used
dipole diffusion model (Jensen et al. 2001) applies the diffusion-theory
formula derived for a planar interface to objects of arbitrary shapes. This
paper presents first results of our investigation of how surface curvature
affects the diffuse reflectance from translucent materials.Comment: 10 pages, 2 figures. The first version of this paper was published in
the Communication Papers Proceedings of 18th International Conference on
Computer Graphics, Visualization and Computer Vision 2010 - WSCG201
Physical State of Molecular Gas in High Galactic Latitude Translucent Clouds
The rotational transitions of carbon monoxide (CO) are the primary means of
investigating the density and velocity structure of the molecular interstellar
medium. Here we study the lowest four rotational transitions of CO towards
high-latitude translucent molecular clouds (HLCs). We report new observations
of the J = (4-3), (2-1), and (1-0) transitions of CO towards eight
high-latitude clouds. The new observations are combined with data from the
literature to show that the emission from all observed CO transitions is
linearly correlated. This implies that the excitation conditions which lead to
emission in these transitions are uniform throughout the clouds. Observed
13CO/12CO (1-0) integrated intensity ratios are generally much greater than the
expected abundance ratio of the two species, indicating that the regions which
emit 12CO (1-0) radiation are optically thick. We develop a statistical method
to compare the observed line ratios with models of CO excitation and radiative
transfer. This enables us to determine the most likely portion of the physical
parameter space which is compatible with the observations. The model enables us
to rule out CO gas temperatures greater than 30K since the most likely
high-temperature configurations are 1 pc-sized structures aligned along the
line of sight. The most probable solution is a high density and low temperature
(HDLT) solution. The CO cell size is approximately 0.01 pc (2000 AU). These
cells are thus tiny fragments within the 100 times larger CO-emitting extent of
a typical high-latitude cloud. We discuss the physical implications of HDLT
cells, and we suggest ways to test for their existence.Comment: 19 pages, 13 figures, 2 tables, emulateapj To be published in The
Astrophysical Journa
Applying Bourdieu to socio-technical systems: The importance of affordances for social translucence in building 'capital' and status to eBay's success
This paper introduces the work of Sociologist Pierre Bourdieu and his concepts of ‘the field’ and ‘capital’ in relation to eBay. This paper considers eBay to be a socio-technical system with its own set of social norms, rules and competition over ‘capital’. eBay is used as a case study of the importance of using a Bourdieuean approach to create successful socio-technical systems.Using a two-year qualitative study of eBay users as empirical illustration, this paper argues that a large part of eBay’s success is in the social and cultural affordances for social translucence and navigation of eBay’s website - in supporting the Bourdieuean competition over capital and status. This exploration has implications for wider socio-technical systems design which this paper will discuss - in particular, the importance of creating socially
translucent and navigable systems, informed by Bourdieu’s theoretical insights, which support competition for ‘capital’ and status
Interstellar Carbon in Translucent Sightlines
We report interstellar C II column densities or upper limits determined from
weak absorption of the 2325.4029 A intersystem transition observed in six
translucent sightlines with STIS. The sightlines sample a wide range of
interstellar characteristics including total-to-selective extinction, R_{V} =
2.6 - 5.1; average hydrogen density along the sightline, = 3 - 14
cm^{-3}; and fraction of H in molecular form, 0 - 40%. Four of the sightlines,
those toward HD 37021, HD 37061, HD 147888 and HD 207198, have interstellar
gas-phase abundances that are consistent with the diffuse sightline ratio of
161 +/- 17 carbon atoms in the gas per million hydrogen nuclei. We note that
while it has a gas-phase carbon abundance that is consistent with the other
sightlines, a large fraction of the C II toward HD 37061 is in an excited
state. The sightline toward HD 152590 has a measured interstellar gas-phase
carbon abundance that is well above the diffuse sightline average; the column
density of C in this sightline may be overestimated due to noise structure in
the data. Toward HD 27778 we find a 3 sigma abundance upper limit of <108 C
atoms in the gas per million H, a substantially enhanced depletion of C as
compared to the diffuse sightline value. The interstellar characteristics
toward HD 27778 are otherwise not extreme among the sample except for an
unusually large abundance of CO molecules in the gas.Comment: Accepted for publication in the Astrophysical Journa
Redefining A in RGBA: Towards a Standard for Graphical 3D Printing
Advances in multimaterial 3D printing have the potential to reproduce various
visual appearance attributes of an object in addition to its shape. Since many
existing 3D file formats encode color and translucency by RGBA textures mapped
to 3D shapes, RGBA information is particularly important for practical
applications. In contrast to color (encoded by RGB), which is specified by the
object's reflectance, selected viewing conditions and a standard observer,
translucency (encoded by A) is neither linked to any measurable physical nor
perceptual quantity. Thus, reproducing translucency encoded by A is open for
interpretation.
In this paper, we propose a rigorous definition for A suitable for use in
graphical 3D printing, which is independent of the 3D printing hardware and
software, and which links both optical material properties and perceptual
uniformity for human observers. By deriving our definition from the absorption
and scattering coefficients of virtual homogeneous reference materials with an
isotropic phase function, we achieve two important properties. First, a simple
adjustment of A is possible, which preserves the translucency appearance if an
object is re-scaled for printing. Second, determining the value of A for a real
(potentially non-homogeneous) material, can be achieved by minimizing a
distance function between light transport measurements of this material and
simulated measurements of the reference materials. Such measurements can be
conducted by commercial spectrophotometers used in graphic arts.
Finally, we conduct visual experiments employing the method of constant
stimuli, and derive from them an embedding of A into a nearly perceptually
uniform scale of translucency for the reference materials.Comment: 20 pages (incl. appendices), 20 figures. Version with higher quality
images: https://cloud-ext.igd.fraunhofer.de/s/pAMH67XjstaNcrF (main article)
and https://cloud-ext.igd.fraunhofer.de/s/4rR5bH3FMfNsS5q (appendix).
Supplemental material including code:
https://cloud-ext.igd.fraunhofer.de/s/9BrZaj5Uh5d0cOU/downloa
Hydroxyl as a Tracer of H2 in the Envelope of MBM40
We observed 51 positions in the OH 1667 MHz main line transitions in the
translucent, high latitude cloud MBM40. We detected OH emission in 8 out of 8
positions in the molecular core of the cloud and 24 out of 43 in the
surrounding, lower extinction envelope and periphery of the cloud. Using a
linear relationship between the integrated OH line intensity and E(B-V), we
estimate the mass in the core, the envelope, and the periphery of the cloud to
be 4, 8, and 5 solar masses. As much as a third of the total cloud mass may be
found in the in the periphery (E(B-V) 0.12 mag) and about a half in the
envelope (0.12 E(B-V) 0.17 mag). If these results are applicable to
other translucent clouds the OH 1667 MHz line is an excellent tracer of gas in
very low extinction regions and high-sensitivity mapping of the envelopes of
molecular clouds may reveal the presence of significant quantities of molecular
mass.Comment: 26 pages, 3 figures, and 5 table
- …
