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ABSTRACT
Most of the physically based techniques for rendering
translucent objects use the diffusion theory of light scat-
tering in turbid media. The widely used dipole diffu-
sion model [JMLH01] applies the diffusion-theory for-
mula derived for the planar surface to objects of arbi-
trary shapes. The purpose of this communication paper
is to present the very first results of our investigation
of how surface curvature affects the diffuse reflectance
from translucent materials.

1 INTRODUCTION
Translucent materials, such as human skin, marble,
wax, fruits, more scatter light than absorb it. There-
fore, when a photon enters such a material, it under-
goes many scattering events under the surface before it
leaves the material. Such a light behavior is well de-
scribed by the Bidirectional Surface Scattering Distri-
bution Function (BSSRDF) [NRH+77]. Based on the
light diffusion theory, Jensen et al. [JMLH01] sug-
gested the dipole diffusion model for BSSRDF. This
model applies an expression for reflectance from a tur-
bid half-space to arbitrarily shaped objects. The mul-
tipole [DJ05, DJ06] and quadpole [DJ08] models have
been suggested to describe more complicated geome-
tries - a multilayered slab (or half-space) and a right-
angle corner, respectively. Jensen et al. [DJ08] showed
that a big variety of shapes can be rendered by combin-
ing photon tracing and a scheme for interpolating be-
tween dipole and quadpole and between quadpole and
multipole models wherever appropriate. However, they
do not focus on how the BSSDRF itself changes as a
flat surface is replaced with a curved one. It is difficult
to devise how their interpolation scheme can be used
with approaches that do not use photon tracing - for ex-
ample, the curvature-based method [Kol07]. Our goal
is to investigate how inclusion of curvature may change
the diffusion BSSRDF model. A BSSRDF model that
includes curvature effects could be easily incorporated
into many existing approaches for rendering translucent
materials. We present here preliminary results of our
study.

2 DIFFUSION EQUATION
Under the assumption that light scattering in a turbid
medium dominates absorption, light transport in it is

well described with the diffusion theory [Far92]. The
fluence rate Ψ(r) obeys the modified Helmholtz equa-
tion [Far92]

∆Ψ−σ
2
trΨ =−D−1

δ (r− r0) (1)

where σtr =
√

3σa(σ ′s +σa) is the effective transport
coefficient, σ ′s is the reduced scattering coefficient, σa is
the absorption coefficient, D = 1

3(σ ′s+σa) is the diffusion
coefficient. We refer the reader to [JMLH01, Far92] for
explanation of the physical meaning of the quanitities.
In the above equation, we assume that there is a single
source in the medium, and it is located at a point r0.

Let us first consider the case of translucent mate-
rial occupying the half-space z > 0. The point source
is at r0 = (0,0,z0). Farrell et al. [Far92] showed
that quite an accurate solution can be obtained by us-
ing the boundary condition Ψ|z=−zb = 0 and putting
the image source at the point r0 = (0,0,−z0 − 2zb),
where zb = 2AD, and A is calculated as described in
[JMLH01, Far92]. The resulting fluence is

R(ρ,z0) =
1

4πD
[
e−σtrr1

r1
+

e−σtrr2

r2
],

where r1 and r2 are the distances to the source and im-
age source, respectively; that is,

r1 = [(z− z0)2 +ρ
2]1/2 (2)

r2 = [(z+ z0 +2zb)2 +ρ
2]1/2 (3)

The reflectance is calculated from the fluence using
the formula

R =−D∇Ψ (4)

where the gradient is evaluated at the interface. In the
planar case, this gives

R(ρ,z0) =
1

4π
[z0(σtr +

1
r1

)
e−σtrr1

r2
1

+

+(z0 +2zb)(σtr +
1
r2

2
)

e−σtrr2

r2
2

] (5)

where r1 and r2 are calculated for z = 0.
The dipole diffusion model [JMLH01] applies the

above formula to an arbitrary shaped air-material in-
terface by calculating r1 and r2 as the distance from
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a point being shaded to the source and image source,
respectively.

3 EXACT SOLUTION FOR A SPHERE
Suppose the turbid medium is confined within a sphere
having the radius R0 and the center at z = R0. In addi-
tion to Cartesian coordinates, we will also use the polar
system of coordinates with r counted from the sphere
center and θcounted from the z axis. We assume that
R0is much bigger than the mean free path for photons
scattered in the medium, we can use the same bound-
ary condition as in the planar case - namely, the fluence
rate vanishes at a distance of zb from the sphere sur-
face. In other words, Ψ is zero at a sphere of the radius
R = R0 + zb. We will solve eq. (1) with the boundary
condition Ψ|r=R = 0 following the method described in
[Mat71]. The solution of the modified Helmholtz equa-
tion 1with the zero boundary condition on the sphere
r = R can be written as

Ψ(r,θ) =


∑

∞
m=0 Am

Im+1/2(σtrr)
√

r Pm(cosθ) , r < r′

∑
∞
m=0 Bm

1√
r [Im+1/2(σtrr)×

×Km+1/2(σtrR)−Km+1/2(σtrr)×
×I(σtrR)]Pm(cosθ) , r > r′

(6)

where r′ is the distance of the point source from the
sphere center; that is, we suppose thatr0 has the polar
coordinates r = r′ and θ = 0. The functions Iv(r) and
Kν(r) are the modified Bessel functions [MA70]. The
constants Amand Bm are determined by stitching the so-
lutions 6 at the sphere r = r′. The function Ψ is con-
tinuous, but its derivative is not. In a manner similar
to that used in [Mat71], we integrate eq. 1 over an in-
finitisemally thin region confined by parts of spherical
surfaces with radiuses r = r′+ε and r = r′−ε and con-
taining the pointr0. We utilize the Gauss theorem and
get

(
∂Ψ

∂ r
|r′+ε −

∂Ψ

∂ r
|r′−ε) =

1
r′2

δ (Ω) (7)

where Ω is the solid angle variable. The delta func-
tion δ (Ω) can be decomposed in terms of the Legendre
polynomials as [Mat71]

δ (Ω) =
∞

∑
m=0

(2m+1)
4π

Pm(cosθ) (8)

Substituting eq. (8) into eq. (7) and calculating the
derivatives from eq. (6), we arrive at an equation for
Amand Bm. One more equation for them is obtained by
requiring continuity of Ψ at r = r′. Solving the resulting
system of two equations, we get

Ψ(r,θ) =
1

4πD
[

∞

∑
m=0

(2m+1)√
rr′

Im+1/2(σtrr′)×

×Im+1/2(σtrr)
Km+1/2(σtrR)
Im+1/2(σtrR)

Pm(cosθ)− e−σtr r̃

r̃
]

where

r̃ = [r2 + r′2−2rr′ cosθ ]1/2,

and we used equality 10.2.35 from [MA70].
To find the reflectance, we choose r′ = R0− z0, apply

eq. 4 and set r = R0 and get

R(r,θ) =
1

4π
σtr{

∞

∑
m=0

(2m+1)√
R0r′

Im+1/2(σtrr′)×

×I′m+1/2(σtrR0)
Km+1/2(σtrR)
Im+1/2(σtrR)

Pm(cosθ)+

+[z0 cosθ −R0(cosθ −1)](σtr +
1
r1

)
e−σtrr1

r2
1
}

4 RESULTS

Figure 1: A spherical potato (left) and a marble sphere
(right) illuminated with a stencil beam, which enters at
the image center, normally to the image plane. Each
of the spheres is rendered using the exact solution pro-
posed (left part of a sphere) and the dipole diffusion
model (right part of a sphere).

We calculated the reflectance from translucent spheres
of various radiuses. The incident light is a pencil beam
entering a sphere at x = 0,y=0 . Ideally, we should con-
sider a line of sources situated along the z axis. But
it was shown in [Far92] that they all can be replaced
with a single source located z = 1/(σ ′s+σa). The plot
below shows how the reflectance depends on the dis-
tance from the point of light entrance measured along
the surface (that is, the length of a geodesic connect-
ing the entrance point and the point of interest). The
calculations were done for the scattering coefficient
σ ′s = 1mm−1and absorption coefficient σa = 0.01mm−1

(note that in [Far92], the same quantities are designated
as µ ′s and µa, respectively). These values of the scat-
tering and absorption coefficients are typical for hu-
man tissue (see [JMLH01]). It can be seen that in this

WSCG 2010 Communication Papers 170



case, the difference between the exactly computed re-
flectance and that found by the dipole diffusion model
becomes noticable only when the radius approaches 1
cm.

Figure 1 above shows visualization of light reflection
from spheres having a radius of 1 cm in two cases -
a potato, on the left, and marble, on the right. As for
the plot given below, we assume that a sphere is lit up
by a stencil beam entering the sphere at the center of
the image. The left part of each of the image corre-
sponds to the exact calculation we describe above. The
right part is computed using the diffuse dipole approx-
imation. We used the measured values σ ′s and σa re-
ported in [JMLH01]. Because the amount of reflected
light decays with distance from the entrance point very
rapidly, we applied the tone mapping operator to a cal-
culated HDR image. We chose the logarithmic mapping
operator[DMAC03], as it is simple and robust, and a
source code for its implementation is available on the
web.

As we could anticipate in advance, the diffuse dipole
model underestimate the reflectance. However, our
investigation shows that this underestimation is small
when curvature radiuses are of the scale of several cen-
timeters and more for such materials as marble, potato,
human tissue.

The program for computing the solution given by the
last formula of the previous section was written using
CUDA [NVI], which allowed a roughly 10x speed-up
as compared to a CPU implementation.
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5 FUTURE WORK
The investigation presented here definitely lacks com-
parison of analytical results with Monte-Carlo simula-
tions. We are working on this and plan to report them
elsewhere when the work is complete. Also, we would
like to consider the case of arbatrarily curved surfaces.
It would be interesting to try to build a phenomenolog-
ical model for reflectance from a translucent material
with an arbitrary surface. It can be sought as a function
of principal curvatures at the point of light entrance. An
approximate solution for slightly curved surfaces can
serve as a base in attempts to construct a phenomeno-
logical model. Monte-Carlo simulations can be used
for validation of such a model. A big potential of the
phenomenological approach to constructing BSSRDF

models has been proven by successfull development of
an empirical BSSRDF model described in [DLR+09].
A BSSRDF model including surface curvature could be
incorporated into the curvature-based method [Kol07].
It could be used for investigating perceptional effects,
such as color shift at the terminator line [Gre04].
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