13,250 research outputs found

    Translating between Horn Representations and their Characteristic Models

    Full text link
    Characteristic models are an alternative, model based, representation for Horn expressions. It has been shown that these two representations are incomparable and each has its advantages over the other. It is therefore natural to ask what is the cost of translating, back and forth, between these representations. Interestingly, the same translation questions arise in database theory, where it has applications to the design of relational databases. This paper studies the computational complexity of these problems. Our main result is that the two translation problems are equivalent under polynomial reductions, and that they are equivalent to the corresponding decision problem. Namely, translating is equivalent to deciding whether a given set of models is the set of characteristic models for a given Horn expression. We also relate these problems to the hypergraph transversal problem, a well known problem which is related to other applications in AI and for which no polynomial time algorithm is known. It is shown that in general our translation problems are at least as hard as the hypergraph transversal problem, and in a special case they are equivalent to it.Comment: See http://www.jair.org/ for any accompanying file

    Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach

    Full text link
    Knowledge bases are employed in a variety of applications from natural language processing to semantic web search; alas, in practice their usefulness is hurt by their incompleteness. Embedding models attain state-of-the-art accuracy in knowledge base completion, but their predictions are notoriously hard to interpret. In this paper, we adapt "pedagogical approaches" (from the literature on neural networks) so as to interpret embedding models by extracting weighted Horn rules from them. We show how pedagogical approaches have to be adapted to take upon the large-scale relational aspects of knowledge bases and show experimentally their strengths and weaknesses.Comment: presented at 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI 2018), Stockholm, Swede

    Holographic Embeddings of Knowledge Graphs

    Get PDF
    Learning embeddings of entities and relations is an efficient and versatile method to perform machine learning on relational data such as knowledge graphs. In this work, we propose holographic embeddings (HolE) to learn compositional vector space representations of entire knowledge graphs. The proposed method is related to holographic models of associative memory in that it employs circular correlation to create compositional representations. By using correlation as the compositional operator HolE can capture rich interactions but simultaneously remains efficient to compute, easy to train, and scalable to very large datasets. In extensive experiments we show that holographic embeddings are able to outperform state-of-the-art methods for link prediction in knowledge graphs and relational learning benchmark datasets.Comment: To appear in AAAI-1

    Space Efficiency of Propositional Knowledge Representation Formalisms

    Full text link
    We investigate the space efficiency of a Propositional Knowledge Representation (PKR) formalism. Intuitively, the space efficiency of a formalism F in representing a certain piece of knowledge A, is the size of the shortest formula of F that represents A. In this paper we assume that knowledge is either a set of propositional interpretations (models) or a set of propositional formulae (theorems). We provide a formal way of talking about the relative ability of PKR formalisms to compactly represent a set of models or a set of theorems. We introduce two new compactness measures, the corresponding classes, and show that the relative space efficiency of a PKR formalism in representing models/theorems is directly related to such classes. In particular, we consider formalisms for nonmonotonic reasoning, such as circumscription and default logic, as well as belief revision operators and the stable model semantics for logic programs with negation. One interesting result is that formalisms with the same time complexity do not necessarily belong to the same space efficiency class
    • …
    corecore