922 research outputs found

    A Combinatorial Algorithm for All-Pairs Shortest Paths in Directed Vertex-Weighted Graphs with Applications to Disc Graphs

    Full text link
    We consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. For an n×nn\times n 0-1 matrix C,C, let KCK_{C} be the complete weighted graph on the rows of CC where the weight of an edge between two rows is equal to their Hamming distance. Let MWT(C)MWT(C) be the weight of a minimum weight spanning tree of KC.K_{C}. We show that the all-pairs shortest path problem for a directed graph GG on nn vertices with nonnegative real weights and adjacency matrix AGA_G can be solved by a combinatorial randomized algorithm in time O~(n2n+min{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) As a corollary, we conclude that the transitive closure of a directed graph GG can be computed by a combinatorial randomized algorithm in the aforementioned time. O~(n2n+min{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) We also conclude that the all-pairs shortest path problem for uniform disk graphs, with nonnegative real vertex weights, induced by point sets of bounded density within a unit square can be solved in time O~(n2.75)\widetilde{O}(n^{2.75})

    Faster all-pairs shortest paths via circuit complexity

    Full text link
    We present a new randomized method for computing the min-plus product (a.k.a., tropical product) of two n×nn \times n matrices, yielding a faster algorithm for solving the all-pairs shortest path problem (APSP) in dense nn-node directed graphs with arbitrary edge weights. On the real RAM, where additions and comparisons of reals are unit cost (but all other operations have typical logarithmic cost), the algorithm runs in time n32Ω(logn)1/2\frac{n^3}{2^{\Omega(\log n)^{1/2}}} and is correct with high probability. On the word RAM, the algorithm runs in n3/2Ω(logn)1/2+n2+o(1)logMn^3/2^{\Omega(\log n)^{1/2}} + n^{2+o(1)}\log M time for edge weights in ([0,M]Z){}([0,M] \cap {\mathbb Z})\cup\{\infty\}. Prior algorithms used either n3/(logcn)n^3/(\log^c n) time for various c2c \leq 2, or O(Mαnβ)O(M^{\alpha}n^{\beta}) time for various α>0\alpha > 0 and β>2\beta > 2. The new algorithm applies a tool from circuit complexity, namely the Razborov-Smolensky polynomials for approximately representing AC0[p]{\sf AC}^0[p] circuits, to efficiently reduce a matrix product over the (min,+)(\min,+) algebra to a relatively small number of rectangular matrix products over F2{\mathbb F}_2, each of which are computable using a particularly efficient method due to Coppersmith. We also give a deterministic version of the algorithm running in n3/2logδnn^3/2^{\log^{\delta} n} time for some δ>0\delta > 0, which utilizes the Yao-Beigel-Tarui translation of AC0[m]{\sf AC}^0[m] circuits into "nice" depth-two circuits.Comment: 24 pages. Updated version now has slightly faster running time. To appear in ACM Symposium on Theory of Computing (STOC), 201
    corecore