
All-Pairs LCA in DAGs:
Breaking through the O(n2.5) barrier∗

Fabrizio Grandoni† Giuseppe F. Italiano‡ Aleksander Łukasiewicz§ Nikos Parotsidis¶

Przemysław Uznański‖

Abstract
Let G = (V,E) be an n-vertex directed acyclic graph (DAG).
A lowest common ancestor (LCA) of two vertices u and
v is a common ancestor w of u and v such that no de-
scendant of w has the same property. In this paper, we
consider the problem of computing an LCA, if any, for all
pairs of vertices in a DAG. The fastest known algorithms
for this problem exploit fast matrix multiplication subrou-
tines and have running times ranging from O(n2.687) [Ben-
der et al. SODA’01] down to O(n2.615) [Kowaluk and Lin-
gas ICALP’05] and O(n2.569) [Czumaj et al. TCS’07]. Some-
what surprisingly, all those bounds would still be Ω(n2.5)
even if matrix multiplication could be solved optimally (i.e.,
ω = 2). This appears to be an inherent barrier for all the
currently known approaches, which raises the natural ques-
tion on whether one could break through the O(n2.5) barrier
for this problem.

In this paper, we answer this question affirmatively: in
particular, we present an Õ(n2.447) (Õ(n7/3) for ω = 2)
algorithm for finding an LCA for all pairs of vertices in a
DAG, which represents the first improvement on the running
times for this problem in the last 13 years. A key tool in our
approach is a fast algorithm to partition the vertex set of
the transitive closure of G into a collection of O(`) chains
and O(n/`) antichains, for a given parameter `. As usual, a
chain is a path while an antichain is an independent set.
We then find, for all pairs of vertices, a candidate LCA
among the chain and antichain vertices, separately. The
first set is obtained via a reduction to (max,min) matrix
multiplication. The computation of the second set can
be reduced to Boolean matrix multiplication similarly to
previous results on this problem. We finally combine the
two solutions together in a careful (non-obvious) manner.

∗Fabrizio Grandoni is partially supported by the SNF Excel-
lence Grant 200020B 182865/1. Giuseppe F. Italiano is partially
supported by MUR, the Italian Ministry for University and Re-
search, under PRIN Project AHeAD (Efficient Algorithms for
HArnessing Networked Data). Aleksander Łukasiewicz and Prze-
mysław Uznański are Supported by the Polish National Science
Centre grant 2019/33/B/ST6/00298.
†IDSIA, Lugano, Switzerland
‡LUISS University, Rome, Italy
§University of Wrocław, Wrocław, Poland
¶Google Research
‖University of Wrocław, Wrocław, Poland

1 Introduction
Let G = (V,E) be a directed acyclic graph (DAG), with
m edges and n vertices. Let u and v be any two vertices
in G: if there is a path from u to v, we say that u is
an ancestor of v and that v is a descendant of u. If u
is an ancestor of v and u 6= v, we say that u is a proper
ancestor of v (and v is a proper descendant of u). A
lowest common ancestor (LCA) of u and v is the lowest
(i.e., deepest) vertex w that is an ancestor of both u
and v, i.e., no proper descendant of w is an ancestor of
both u and v. In the special case of a tree, the lowest
common ancestor of two vertices is always defined and
is unique. In a DAG G, the existence of an LCA for
a pair of vertices is not even guaranteed, and a pair of
vertices can have as many as (n− 2) LCAs, where n is
the total number of vertices in G.

In this paper, we consider the problem of comput-
ing an LCA for all pairs of vertices in a DAG, which we
refer to as the All-Pairs LCA problem. This is a funda-
mental problem and has many important applications,
including inheritance in object-oriented programming
languages, analysis of genealogical data and modeling
the behavior of complex systems in distributed comput-
ing (see, e.g., [8, 14, 37] for a list of applications and
especially [8] for further references).

The All-Pairs LCA problem for DAGs has been
investigated in the last two decades, and many al-
gorithms have been presented in the literature (see,
e.g., [8, 9, 15, 26, 27, 29]). The problem was first con-
sidered by Bender et al. [8, 9], who proved an Ω(nω)
lower bound, by giving a reduction from the transitive
closure problem, and presented an algorithm that runs
in O(n(ω+3)/2) time, where ω is the exponent of the
fastest known matrix multiplication algorithm. Later
on, Kowaluk and Lingas [26] improved this bound to
O(n2+1/(4−ω)) by showing that the All-Pairs LCA prob-
lem can be reduced to finding maximum witnesses for
Boolean matrix multiplication and by providing an ef-
ficient solution to the latter problem. The current best
bound for the All-Pairs LCA problem is O(n2.5286) by
Czumaj et al. [15]. To achieve this bound, they solved
the problem of finding maximum witnesses for Boolean

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited273

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

matrix multiplication in time O(n2+λ), where λ satis-
fies the equation ω(1, λ, 1) = 1 + 2λ. Here ω(1, x, 1) is
the exponent of the (rectangular) multiplication of an
n× nx matrix by an nx × n matrix. The currently best
known bound on ω(1, x, 1) implies a bound of O(n2.5286)
for the All-Pairs LCA problem.

Somewhat surprisingly, all the currently known
bounds for the All-Pairs LCA problem [8, 9, 15, 26]
would still be Ω(n2.5) even if matrix multiplication could
be solved optimally (i.e., ω = 2). This appears to be an
inherent barrier for all the currently known approaches,
which raises the natural question on whether one could
break through the O(n2.5) barrier for this problem.

Our result. In this paper we answer this question
affirmatively by presenting a new algorithm which runs
in time Õ(n2.447). This is the first improvement on the
running time for this problem in the last 13 years. To
this end we introduce some novel techniques, which dif-
fer substantially from previous approaches for the same
problem. In particular, we develop a new technique for
covering a DAG G with a small number of chains and
antichains, which might also be of independent inter-
est. Here, a chain is just a path in G, while an an-
tichain is an independent set (i.e., a subset of vertices
such that there is no edge between any two of them).
In more detail, given a parameter ` ≤ n, we show how
to partition the vertices of G into at most ` chains and
2n/` antichains in time O(n2). We refer to this as an
(`, 2n/`)-decomposition of G.

We now sketch how to exploit this decomposition
in order to compute efficiently all-pairs LCAs. Let GT
be the transitive closure of G, which can be computed
in time O(nω). Note that we can solve the All-Pairs
LCA problem in G by solving the same problem in
GT . We first find an (nx, 2n1−x)-decomposition of GT
in time O(n2) for a parameter x, 0 ≤ x ≤ 1, to be
fixed later. Next, for each pair of vertices, we find a
candidate LCA among the chain and antichain vertices,
separately. The first set can be obtained in time
Õ(n

ω(1,x,1)+2+x
2) via a reduction to (max,min) matrix

multiplication, similarly to Bender et al. [8, 9] and to
Czumaj et al. [15]. The computation of the second
set can be reduced to Boolean matrix multiplication in
time Õ(n1−x+ω(1,x,1)). Combining the two solutions is
non-trivial and requires some extra care. Putting all
pieces together yields a total running time of Õ(nω +

n
ω(1,x,1)+2+x

2 + n1−x+ω(1,x,1)). Balancing the last two
terms implies ω(1, x, 1) = 3x, and thus a running time
of Õ(nω +n1+2x). Using the equation ω(1, x, 1) = 3x to
tune the parameter x, yields x = 0.7232761, and hence
a total running time of O(n2.447).

We remark that if matrix multiplication could be
solved optimally (i.e., ω = 2), several graph algorithms

based on fast matrix multiplication would take either
time Õ(n2) or time Õ(n2.5). As it was already men-
tioned, the previous algorithms by Bender et al. [8, 9],
by Kowaluk and Lingas [26] and by Czumaj et al. [15]
would all take time Õ(n2.5). On the other side, under
the same assumption, the running time of our algorithm
would be Õ(n2+

1
3). Thus, our improvement suggests a

possible separation between the All-Pairs LCA and the
minimum / maximum witness for Boolean matrix mul-
tiplication (used by Czumaj et al. [15] as a reduction in
their algorithm for All-Pairs LCA).

Related work. The problem of finding LCAs in
trees was first introduced by Aho et al. [1]. The
first optimal (linear preprocessing and O(1) time per
query) solution to this problem was presented by Harel
and Tarjan [23], although with a sophisticated data
structure which is not practical. The first simple, near-
optimal algorithm for LCAs in trees was introduced by
Bender and Farach-Colton [7]. We remark that LCA
problem in trees exemplifies a rather different structure
than in DAGs.

Matrix multiplication is a fundamental problem,
with a long line of algebraic approaches, with recent re-
sults by Stothers [39], Vassilevska-Williams [42] and fi-
nally Le Gall [31], which yielded ω < 2.3728639. There
are known faster (under the assumption that ω > 2)
algorithms for rectangular matrix multiplication, with
current best bounds by Le Gall and Urrutia [32]. There
is a long list of problems which are equivalent to ma-
trix multiplication e.g., Boolean matrix multiplication
witnesses with Õ(nω) [3] and All-Pairs Shortest Paths
(APSP) in undirected unweighted graphs [2].

There is a large family of graph and geometric
problems for which the best known algorithms use
matrix-multiplication and their complexity is between
nω and n3. Such problems include All-Pair Bottle-
neck Paths (APBP): [19, 40], vertex APBP [38], un-
weighted directed APSP [48], All-Pair Nondecreasing
Paths [17, 18, 43], and Dominance-, Hamming- and L1-
matrix products: [24, 35, 46]. Interestingly, for all the
aforementioned problems, the best known algorithms
would be of complexity Õ(n2.5) if ω = 2. For fine-
grained complexity of intermediate complexity prob-
lems and the relations between them, see recent results
[6, 11, 20, 34].

For other results on All-Pairs LCA, see [27] on
finding unique LCA. Other work in the area include [16].

For related problems of minimal witnesses of
Boolean matrix multiplication, we refer to an algorithm
for sparse matrices [13], and to a recent quantum algo-
rithm [28]. We also refer to [29] which introduced path
covering techniques in the All-Pairs LCA problem. The
authors observe that covering a DAG with a small num-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited274

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

ber of paths might lead to faster algorithms, which is one
of the key observations used in our algorithm. However,
this observation alone does not imply a faster algorithm.

The decomposition of a partially ordered set into
disjoint chains and antichains can be seen as a special
case of finding a cocoloring of a graph. A cocoloring
of a graph is a partition of its vertices into cliques
and independent sets. The cochromatic number of
a graph is the cardinality of the smallest cocoloring.
This problem has been originally studied by Lesniak
and Straight [33]. The special case of partitioning
a sequence into monotonic subsequences has received
considerable attention [5, 10, 21, 22, 41, 45], since it has
many applications, including book embeddings [5], and
geometric algorithms [4, 5, 12].

2 Preliminaries
Let G = (V,E) be a DAG, with m edges and n vertices.
Without loss of generality we assume that G is weakly
connected (hence, m ≥ n − 1). If (u, v) ∈ E(G) we
say that u is a parent of v and v is a child of u. If
there is a path from u to v in G we say that u is an
ancestor of v and that v is a descendant of u. If u is
an ancestor of v and u 6= v, we say that u is a proper
ancestor of v (and v is a proper descendant of u). A
lowest common ancestor (LCA) of u and v is the lowest
(i.e., deepest) vertex w that is an ancestor of both u and
v, i.e., no proper descendant of w is an ancestor of both
u and v. We use LCA(u, v) to denote the set of LCAs
of u and v. In case there is no common ancestor of u
and v, LCA(u, v) = ∅. In this paper, we consider the
following problem.

Problem 2.1. (All-Pairs LCA) Let G = (V,E) be a
DAG. Compute a lowest common ancestor for all pairs
of vertices u, v ∈ V .

Matrix multiplication. We use MM(X,Y, Z) to
denote the time complexity of multiplying two matrices
of dimensions X×Y and Y ×Z respectively. We denote
by ω the exponent of the fastest known matrix multipli-
cation algorithm, i.e., MM(n, n, n) = O(nω). The cur-
rent best bound for ω is ω < 2.3728639 [31]. We denote
by ω(a, b, c) the rectangular matrix multiplication expo-
nent, i.e., MM(na, nb, nc) = O(nω(a,b,c)). The following
is a standard bound derived from reducing rectangular
matrix multiplication to square matrix multiplication:

(2.1) ω(1, x, 1) ≤ 2 + x(ω − 2) for 0 ≤ x ≤ 1.

We introduce the following definition:

Definition 2.2. Let α > 0.31389 be the maximum
value satisfying ω(1, α, 1) = 2, and let β = ω−2

1−α .

The following bound holds:

(2.2) ω(1, x, 1) ≤

{
2 + β(x− α) when α ≤ x ≤ 1,

2 when 0 ≤ x ≤ α.

We remark that there are better bounds on
ω(1, x, 1) (see, e.g., [32]). In particular, the following
bound is known:
(2.3)
ω(1, x, 1) ≤ 1.690383 + 0.66288 · x for 0.7 ≤ x ≤ 0.75

We now sketch how all those bounds influence the
Õ(nω+n1+2x) running time of our algorithm. If we sim-
ply use square matrix multiplication as a subroutine to
implement rectangular matrix multiplication (i.e., the
bound in (2.1)), combining this with equation 3x =
ω(1, x, 1), we obtain x = 2

5−ω . In this case, the running

time of our algorithm would be Õ(n
9−ω
5−ω) ∈ O(n2.522571),

which is already an improvement over the algorithm by
Czumaj et al. [15]. This bound can be further improved
by using more sophisticated rectangular matrix multi-
plication algorithms. In particular, using the bound in
(2.2), we get x = 2−ωα

5−ω−3α and the running time of our
algorithm becomes O(n2.489418), which means breaking
through the O(n2.5) barrier. By applying (2.3), we fi-
nally get x = 0.7232758, which yields our claimed run-
ning time of O(n2.4465522).

Max-min matrix product. We exploit fast algo-
rithms for the max-min matrix product. In more de-
tail, let A be an n × p matrix and B be a p × n ma-
trix. The entries of A and B are assumed to come from
Z ∪ {−∞}. The max-min product C = A > B is spec-
ified by C[i, j] = maxk min{A[i, k], B[k, j]}. A simple
modification of the algorithm and analysis in [19] im-
plies the following complexity (for which we provide a
short proof in Section 6 for completeness).

Theorem 2.1. (Corollary of [19]) If A and B are
respectively n×p and p×n matrices, then the A>B prod-
uct can be computed in time Õ(

√
MM(n, p, n) · n2p).

3 Fast Chain-Antichain Decomposition
Let G = (V,E) be a DAG, with n vertices and m
edges. A chain (of size k) of G is a subset of vertices
{c1, . . . , ck} such that c1, . . . , ck is a directed path in
G. An antichain (of size k) of G is a subset of
vertices {a1, . . . , ak} such that there is no edge between
them. Observe that if G is the graph induced by a
partial order, then our definitions coincide with the
usual definitions of chain and antichain in a partially
ordered set.

Definition 3.1. An (a, b)-decomposition of a DAG G
consists of a collection P of chains of G, |P| ≤ a, and

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited275

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Algorithm 1 Compute chain/antichain decomposition
Input: DAG G with the topological ordering v1, . . . , vn
of its vertices and parameter `, with h = dn/`e.
Output: (`, 2n`)-decomposition of G.
1: Initialize G′ ← ∅, P ← ∅, Q ← ∅, L′i ← ∅ for

1 ≤ i ≤ h
2: for t = 1, . . . , n do
3: MOVE← ∅, DEL← ∅
4: insert(vt)
5: if |L′h(vt)| ≥ ` then
6: Add antichain L′h(vt) to Q and all its vertices

to DEL
7: else if h(vt) = h then
8: u← vt
9: Ct ← {u}

10: while Lnext(u) 6= ∅ do
11: u← any element of Lnext(u)
12: Add u to Ct
13: end while
14: Add chain Ct to P and all its vertices to DEL
15: end if
16: while DEL ∪MOVE 6= ∅ do
17: if DEL 6= ∅ then
18: Extract w from DEL and execute delete(w)
19: else
20: Extract w from MOVE and executemove(w)
21: if |L′h(w)| ≥ ` then
22: Add antichain L′h(w) to Q and all its ver-

tices to DEL
23: end if
24: end if
25: end while
26: end for
27: return (P,Q)

a collection Q of antichains of G, |Q| ≤ b, that together
span all the vertices of G.

One could find an (`, n/`)-decomposition with a
simple greedy method, as follows: find and remove
the longest chain in G, for ` times in total. Next,
cover whatever remains with n/` antichains (since the
remaining graph has depth at most n/`). Such an
algorithm takes time O(m`) in total (O(n2`) for dense
graphs), since finding “naively” the longest chain in a
DAG can be accomplished by a single graph traversal.
Unfortunately, this running time would be too slow for
our purposes.

We next present a faster algorithm for computing
an (`, 2n`)-decomposition of a DAG G, as stated in the
following theorem, which will be proven in this section.

Theorem 3.1. Let G = (V,E) be a DAG with n
vertices, and let ` ∈ [1, n] be an integer parameter.
There exists an O(n2) time deterministic algorithm to
compute an (`, 2n`)-decomposition of G.

We assume that G is represented via an adjacency
matrix (otherwise, we can construct it in O(n2) time).
The high level idea is as follows. Let v1, . . . , vn be a
topological ordering of the vertices of G (which can
be computed in O(n2) time). Let Vi = {v1, . . . , vi},
1 ≤ i ≤ n, denote the first i vertices in the topological
order. The algorithm consists of (n + 1) iterations. At
the beginning of iteration t ≥ 1 we are given an input
graph Gt−1 = G[Wt−1] induced in G by a set of vertices
Wt−1 ⊆ Vt−1. Initially G0 is the empty graph (and
W0 = ∅). For 1 ≤ t ≤ n, graphGt is obtained fromGt−1
as follows. We first add vertex vt. Then we remove (and
add to our decomposition) possibly one chain of size at
least n/` and possibly some antichains of size ` each.
After iteration n, there is a final special iteration n+ 1
where Gn is decomposed into at most n/` antichains
which are added to our decomposition. Clearly, this
process produces at most ` chains and at most 2n/`
antichains, as required.

As mentioned earlier, during a given iteration we
insert and remove sets of vertices in a form of chains
and antichains. We let G′ = G[W ′] denote the current
graph. The set of vertices that are present in G′ is
implicitly maintained by using a Boolean vector that
indicates the existence of a vertex in W ′. Since each
vertex is added and removed from G′ at most once, the
maintenance of this vector takes total time O(n).

Furthermore, we let L′1, . . . , L′h, h := dn/`e, be
disjoint (initially empty) sets of vertices that we will
call layers. We say that a vertex v ∈ L′i is at level i.
Intuitively, the level of vertex v ∈ G′ will be the length
of the longest chain ending at v. This will immediately
imply that all layers will form antichains. During the
execution of our algorithm it holds that |L′i| ≤ `,
1 ≤ i ≤ h, at all times: as a consequence, whenever
at any point during the execution of the algorithm, we
identify |L′i| = ` for some set L′i, we can remove from
W ′ the vertices in L′i since they form an antichain of size
`. We say that the algorithm is in a stable state when
the set W ′ is partitioned into the sets L′i, 1 ≤ i ≤ h,
such that each vertex v ∈ L′i, for i ≥ 2, has a parent
u ∈ L′i−1. Therefore, once we have that L′h 6= ∅ during
a stable state of the algorithm, it can be seen (as we
will show later) that starting from a vertex v ∈ L′h and
following any path by traversing a parent of each visited
vertex produces (the reverse of) a chain of G′ of length
exactly h. After the removal of some set of vertices
(either a chain or antichain) from G′, the algorithm
might enter into an unstable state (i.e., not a stable

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited276

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

state), and hence our algorithm will work to restore a
stable state by suitably modifying the partitioning of
W ′ into the sets L′1, . . . , L′h. We next give the low level
details of our algorithm.

We maintain all sets L′i into an array of size h of
doubly-linked lists. We will guarantee that each v ∈ G′
is contained in precisely one such set L′i, and maintain
bi-directional pointers between the corresponding two
copies of v. We also maintain the sizes |L′i|, and
maintain the following quantities for each vertex v ∈ G′:

• the level h(v) of v;

• a list Lnext(v) of pointers to parents of v in Lh(v)−1
(Lnext(v) = ∅ for h(v) = 1).

• a list Lprev(v) of pointers to children of v in Lh(v)+1.

The lists Lnext and Lprev are used to assist fast
insertions (resp., deletions) of vertices to (resp., from) a
list L′i. We note that the lists Lprev are not required for
the correctness of the algorithm, but only for efficiency
reasons. In order to be able to quickly update lists
Lprev(v) and Lnext(v) after we delete or move a vertex
we store together with each entry w ∈ Lprev(v) a pointer
to the occurrence of v in the list Lnext(w). We also store
with each entry v ∈ Lnext(w) a pointer to the occurrence
of w in the list Lprev(v). This way, for some vertex
w ∈ Lprev(v) we can remove v from Lnext(w) in constant
time, and vice versa. For the sake of simplifying the
presentation, these pointers are updated implicitly and
we assume that we can execute the relevant insertions
and removals in constant time.

During each iteration t ≤ n we perform three main
operations:

• insert(v): adds vertex v to G′. This is applied once
to vt at the beginning of iteration t.

• delete(v): deletes vertex v from G′. This is used to
remove chains and antichains from G′.

• move(v): moves v from some L′i to some L′j , j <
i. This is used to modify the assignment of the
vertices of G′ to the layers L′1, . . . , L′h in order to
restore a stable state of the algorithm.

The latter two operations can be performed multi-
ple times in each iteration. Throughout, we will main-
tain the following invariant:

Invariant 3.2. After each execution of insert(),
delete() or move(), the following holds:

1. Each vertex v ∈ G′ belongs to one L′i and, right
before an insert() (or after the last iteration), L′h =
∅;

Procedure 2 insert(v): Insert vertex v
1: Lprev(v)← ∅, Lnext(v)← ∅
2: for i = h− 1, h− 2, . . . , 1 do
3: for each u ∈ L′i do
4: if (u, v) ∈ E(G′) then
5: Add u to Lnext(v)
6: end if
7: end for
8: if Lnext(v) 6= ∅ then
9: Add v to L′i+1, increment |L′i+1|, and set

h(v)← i+ 1
10: for u ∈ Lnext(v) do
11: Add v to Lprev(u)
12: end for
13: return
14: end if
15: end for
16: Add v to L′1, increment |L′1|, and set h(v)← 1

Procedure 3 delete(v): Delete vertex v
1: Remove v from G′ and from L′h(v), decre-

ment |L′h(v)|
2: for each u ∈ Lnext(v) do
3: Remove v from Lprev(u) and u from Lnext(v)
4: end for
5: for each w ∈ Lprev(v) do
6: Remove v from Lnext(w) and w from Lprev(v)
7: if Lnext(w) = ∅ then
8: Add w to MOVE
9: end if

10: end for

2. Each L′i has size at most `, and size at most `− 1
right before an insert() or move().

3. For each v ∈ G′, each parent w ∈ G′ of v belongs
to some lower layer L′j, j < h(v).

4. There is no edge (u, v) for u and v belonging to the
same layer L′i.

5. Right before an insert() each vertex v ∈ L′i, for
i ≥ 2, has a parent u ∈ L′i−1 (i.e., the algorithm is
at a stable state).

We next describe in more detail a given iteration
t ≤ n, modulo a detailed description of the operations
insert(), delete() and move() which will be given later.
We create two empty lists DEL and MOVE. Intuitively,
DEL contains vertices that have to be deleted from G′,
while MOVE contains vertices that need to be moved to
a lower layer (unless they are deleted earlier) in order
to restore a stable state of the algorithm. Initially we
execute insert(vt). This way we add vt to G′ to some

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited277

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

L′i. Then we add some vertices to DEL if one of the
following two cases happens: (a) vt ∈ L′h or (b) vt ∈ L′i
and |L′i| = `. In case (a) we compute a set Ct iteratively
as follows. Initially u = vt. We add u to Ct, then update
u to any vertex in Lnext(u) and iterate. We halt when
Lnext(u) = ∅. Ct is added to the set P of chains in
the decomposition under construction and its vertices
are added to DEL. Notice that by Invariant 3.2 the
algorithm is at a stable state right before the insert()
operations is executed. We will later show that, indeed,
Ct is a chain in G′ of size precisely h. In case (b) we
add L′i (interpreted as a set of vertices) to the set of
antichains Q in the decomposition and its vertices to
DEL. By Invariant 3.2, there is no edge between any
two vertices in L′i, and thus, is an antichain in G′ of size
precisely `.

Now we perform the following steps while DEL ∪
MOVE 6= ∅1. If DEL 6= ∅, we extract v from DEL and
call delete(v). This procedure removes v from G′ and
from the corresponding layer L′i, and it might add some
vertices to MOVE. In particular, if v used to be the
only parent of w, then w is added to MOVE. Notice
that at that point the algorithm is in an unstable state
and cannot return to a stable state before all vertices in
MOVE are re-assigned to appropriate layers.

Otherwise (i.e. DEL = ∅), we extract v from MOVE
and, if v ∈ G′ (i.e., v was not deleted in some previous
step), we call move(v). This procedure will move v from
its current layer L′i to some lower layer L′j , j < i. If after
this step it happens that |L′j | = `, then L′j is added to Q
and its vertices are added to DEL. Again, by Invariant
3.2, there is no edge between any two vertices in L′j , and
thus, it is an antichain in G′ of size `.

Procedure insert(v) works as follows. We consider
the layers j = h − 1, . . . , 1 in this order, and check
whether v has some parent in L′j . Notice that all parents
of v must have been inserted at some previous iteration,
however they might not belong to G′ any longer due
to deletions. As soon as one such parent is found, v is
added to L′j+1 (and |L′j+1| is incremented). We initialize
Lnext(v) with the parents of v in L′j and add v to
Lprev(u) for each u ∈ Lnext(v). We also set Lprev(v) = ∅
(the children of v still need to be inserted). If no parent
is found, v is inserted in L′1 (and |L′1| is incremented)
and we set Lnext(v) = Lprev(v) = ∅. In any case v is
added to G′.

Procedure delete(v) works as follows. Assume v ∈
L′i. The first step is to remove v from G′ and L′i
(decrementing |L′i|). Then, for each vertex u ∈ Lnext(v)
(i.e. a parent of v) that is still in G′, we remove v from

1Notice that if cases (a) and (b) above do not happen, we stop
at this point.

Procedure 4 move(v): Move vertex v to a lower layer
1: Remove v from L′h(v), decrement |L′h(v)|
2: for each w ∈ Lprev(v) do
3: Remove v from Lnext(w)
4: if Lnext(w) = ∅ then
5: Add w to MOVE
6: end if
7: end for
8: Lnext(v)← ∅, Lprev(v)← ∅
9: for j = h(v)− 2, . . . , 1 do

10: for each u ∈ L′j do
11: if (u, v) ∈ E(G′) then
12: Add u to Lnext(v)
13: end if
14: end for
15: if Lnext(v) 6= ∅ then
16: Add v to L′j+1, increment |L′j+1|, and set

h(v)← j + 1
17: for u ∈ Lnext(v) do
18: Add v to Lprev(u)
19: end for
20: return
21: end if
22: end for
23: Add v to L′1, increment |L′1|, and set h(v)← 1
24: for each u ∈ L′2 do
25: if (v, u) ∈ E(G′) then
26: Add u to Lprev(v) and v to Lnext(u)
27: end if
28: end for

Lprev(u). Next we scan the list Lprev(v) and for each
vertex w ∈ G′ in such list we remove v from Lnext(w)
and w from Lprev(v). If Lnext(w) = ∅ after the removal
of v, we add w to MOVE.

It remains to describe move(v). Again assume
v ∈ L′i. Notice that by construction i ≥ 2 since we never
add to MOVE vertices in L′1. We initially consider the
vertices w ∈ Lprev(v), and remove v from Lnext(w) and
w from Lprev(v). Notice that, similarly to the delete(v)
case, if Lnext(w) = ∅, we need to add w to MOVE. Then
we consider the layers j = i − 2, . . . , 1 one by one, and
check whether L′j contains at least one parent of v. If
such a parent is found, v is moved from L′i to L′j+1

(updating |L′i| and |L′j+1|, and setting h(v) ← j + 1,
consequently). All the parents of v in L′j are added to
Lnext(v). If no parent is found, v is moved to L′1 and the
procedure sets Lnext(v) = ∅, and h(v) ← 1. In either
case (that is, either Lnext(v) = ∅ or Lnext(v) 6= ∅), we
scan all vertices of L′h(v)+1 for children of v and for each
such child u we add u to Lprev(v) and v to Lnext(u).

Notice that the above procedure moves a vertex

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited278

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

only to a strictly lower level.
Observe that, by giving priority to the delete() op-

erations over the move() operations, we avoid increasing
the size of any layer above ` (that is, we preserve case
4 of Invariant 3.2). This not only allows us to identify
antichains of length ` during an unstable state but also,
most importantly, limits the size of the vertices to test
for identifying parents and children during the subse-
quent insert() and move() operations. We defer to the
Section 5 the proof that after each execution of insert(),
delete() or move() Invariant 3.2 is satisfied.

At the end of the last iteration by Invariant 3.2
all vertices still in G′ are contained in some L′i, i =
1, . . . , h − 1. We execute a special final iteration n + 1
where we add each such set L′i as an antichain to our
decomposition.

Lemma 3.1. The algorithm described above (pseudo-
code in Algorithm 1) computes an (`, 2n`)-decomposition.

Proof. By construction each vertex which is included in
a chain or antichain in the first n iterations is deleted
from G′, hence it is not included in any following chain
or antichain. The antichains added to Q in iteration
n + 1 are disjoint by Invariant 3.2. Furthermore, all
vertices are added at some point to G′, hence they are
included by construction in some chain or antichain at
some later point. Thus the chains and antichains induce
a partition of the vertex set V .

Each list Lnext(v) by construction contains parents
of v only. Furthermore, right before the insert(vt)
operation that leads to the construction of some set
Ct, each vertex w ∈ L′i, i ≥ 2, must have at least
one parent in L′i−1 by construction (by Invariant 3.2),
hence Lnext(w) is not empty and contains vertices in G′.
Consequently Ct is a chain in G′ of size precisely h.

Similarly, by Invariant 3.2, vertices in each set L′i
that are added to the set Q of antichains are not parents
of each other, hence they form a correct antichain.
Notice also that all the sets L′i that are added to Q
in the first n iterations have size precisely ` and consist
of vertices in G′ only. Indeed, the condition |L′i| = `
happens after an insert() or move() operation. In both
cases there are no vertices in DEL, hence any vertex in
L′i is also present in G′.

Finally, we bound the number of chains and an-
tichains. As argued before, each chain Ct has size pre-
cisely h ≥ n/`. Hence disjointness implies that there are
at most ` such chains. Similarly, each antichain that we
add in the first n iterations has size precisely `, hence
disjointness implies that there are at most n/` such an-
tichains. In the final iteration n + 1 we add at most
h− 1 ≤ n/` extra antichains. The claim follows.

We defer to the Section 5 the proof that the running

time of the algorithm is O(n2).

4 All-Pairs LCA in DAGs
In this section we present our improved algorithm for
All-Pairs LCA in DAGs.

We start by sketching the high level ideas behind
the algorithm. Let Ginput be the input DAG and let G
be the transitive closure of Ginput. We compute G in
O(nω) time and solve the All-Pairs LCA problem on G
(obviously the solution in the two cases is identical).

To do this, we first compute an (nx, 2n1−x)-
decomposition (P,Q) of G in O(n2) time with the algo-
rithm from Theorem 3.1. Recall that P = {P1, . . . , Pp}
is a set of p ≤ nx chains and Q = {Q1, . . . , Qq} a set
of q ≤ 2n1−x antichains. Here x ∈ [0, 1] is a parameter
to be optimized later in order to minimize the overall
running time.

We now define the notion of LCA restricted to a
subset W of vertices as follows.

Definition 4.1. Given a DAG G = (V,E), a subset
of vertices W ⊆ V , and a pair of vertices u, v ∈ V ,
LCAW (u, v) is the set of vertices w ∈ W which are
ancestors of both u and v and such that there is no
descendent w′ ∈ W of w with the same property. Any
w ∈ LCAW (u, v) is a W -restricted LCA of {u, v}.
The W -restricted All-Pairs LCA problem is to compute
lcaW (u, v) ∈ LCAW (u, v) for all pairs of vertices u, v ∈
V (lcaW (u, v) = −∞ if LCAW (u, v) = ∅).

We use P-restricted and Q-restricted as shortcuts for
(∪P∈PP)-restricted and (∪Q∈QQ)-restricted resp., and
also define analogously LCAP(·, ·), lcaP(·, ·) etc. The
next step is to solve the P-restricted and Q-restricted
All-Pairs LCA problems. In particular, we plan to
compute the values lcaP(u, v) and lcaQ(u, v) for all pairs
of vertices u, v ∈ V . This is explained in sections
4.1 and 4.2 resp. In more detail, the first problem
is solved in time Õ(n

ω(1,x,1)+2+x
2) using a reduction to

one max-min product. The second problem is solved
in time Õ(n1−x+ω(1,x,1)) by performing one Boolean
matrix product of cost Õ(nω(1,x,1)) for each Q ∈ Q.

At this point we need to combine the two solu-
tions together. A naive approach might be as fol-
lows. Let us label the vertices from 1 to n accord-
ing to some arbitrary topological order. Then, for
any pair of vertices u, v, we simply set lca(u, v) =
max{lcaP(u, v), lcaQ(u, v)} (in total time O(n2)). Un-
fortunately, as discussed in Section 4.3, there exist topo-
logical orderings for which this approach fails. In the
same section we show how to compute a specific topo-
logical ordering in O(n2) time such that the above com-
bination indeed works. Then, it will be sufficient to
optimize over the parameter x.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited279

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Algorithm 5 Compute lcaP(u, v) for all pairs of ver-
tices u, v ∈ V .
Input: Transitive closure graph G = (V,E), and a
family of chains P = {P1, . . . , Pp} of G where p ≤ nx.
Output: P-restricted LCA lcaP(u, v) for each pair of
vertices u, v ∈ V .
1: Initialize lcaP(·, ·) with −∞
2: Let A be an n× p matrix
3: for Pi ∈ P do
4: for v ∈ V do
5: Let wi(v) be the parent of v in Pi with the

largest index, otherwise wi(v) = −∞
6: Set A[v, i]← wi(v)
7: end for
8: end for
9: Compute the (max,min)-product A>AT

10: for all u, v ∈ V, u 6= v do
11: lcaP(u, v)← (A>AT)[u, v]
12: end for

Throughout this section we assume that vertices
are labeled with integers between 1 and n (according
to some given order to be specified later).

4.1 Computing P-Restricted LCAs In this sec-
tion we present our algorithm for the P-restricted All-
Pairs LCA problem. We next assume that vertices are
labeled with integers 1, . . . , n according to some topo-
logical order. In the next section we will specify such
ordering in a more careful way in order to achieve our
final result.

Our algorithm works as follows (see also the pseudo-
code in Algorithm 5). For each vertex v and each
chain Pi, we compute the ancestor wi(v) of v in Pi
with largest index (wi(v) = −∞ if there is no such
ancestor). Next, for each pair of vertices u, v and each
Pi, we compute wi(u, v) = min{wi(u), wi(v)}. Finally
we set lcaP(u, v) = max1≤i≤p{wi(u, v)}.

Recall that, given two matrices A and B, their
max-min product C = A > B is specified by C[i, j] =
maxk min{A[i, k], B[k, j]}.

In order to implement the above algorithm, it is
sufficient to construct an n × nx matrix A whose rows
are indexed by vertices in V and whose columns are
indexes by chains Pi. The entry A[v, Pi] corresponds to
the value wi(v) defined above. Then it is sufficient to
compute C = A > AT and set lcaP(u, v) = C[u, v] for
all pairs u, v ∈ V .

Lemma 4.1. The P-restricted All-Pairs LCA problem
can be solved in time Õ(n

ω(1,x,1)+2+x
2).

Proof. Consider the above algorithm (pseudo-code in

Algorithm 5). To analyze its running time, we observe
that the matrix A can be built in time O(n2) by
scanning the vertices v ∈ V and the vertices w in P.
The rest of the computation takes time O(n

ω(1,x,1)+2+x
2)

by Theorem 2.1. The claim follows.
For the correctness observe that, if Pi contains

a vertex in LCAP(u, v), then this vertex has to be
w = wi(u, v). Indeed, by construction w is an ancestor
of both u and v. Since wi(u, v) = min{wi(u), wi(v)},
any successor w′ of w along Pi is not an ancestor of u or
of v. Vice versa, any ancestor w′ of w along Pi cannot
be in LCAP(u, v) due to the existence of w. Therefore
the set W := {wi(u, v)}i contains LCAP(u, v). Notice
also that W = {−∞} iff u and v do not have a common
ancestor in P, in which case LCAP(u, v) = ∅. Therefore
we can w.l.o.g. assume that the algorithm returns some
w ∈ W , w 6= −∞. In particular, w is a vertex with
the largest index in W according to the considered
topological order. Assume by contradiction that w /∈
LCAP(u, v). This implies that there exists some other
vertex w′ ∈ LCAP(u, v) which is a descendant of w.
But vertex w′ must be contained in W , which implies
w′ < w (otherwise the algorithm would not return w).
This is a contradiction since w′ is a descendant of w and
at the same time has a smaller index in some topological
order.

4.2 Computing Q-Restricted LCAs In this sec-
tion we present our algorithm for the Q-restricted All-
Pairs LCA problem. For notational convenience let
us rename Q as Q′ = {Q′1, . . . , Qq′}. Recall that
q′ ≤ 2n1−x. The first step in our construction is to
transformQ′ into a more convenient family of antichains
Q as follows.

Definition 4.2. Let Q = {Q1, . . . , Qq} be a collection
of disjoint antichains of a transitive closure graph G =
(V,E). Q is path-respecting if for any two vertices
x ∈ Qi, y ∈ Qj such that (x, y) ∈ E it holds that i < j.

Lemma 4.2. (Folklore) Given a transitive closure
graph G = (V,E) and a collection of q′ disjoint an-
tichains Q′ = {Q′1, . . . , Q′q′} over the vertex set W ⊆ V ,
a greedy algorithm computes a partition of W into a col-
lection of q ≤ q′ disjoint antichains Q = {Q1, . . . , Qq}
in time O(n2).

Proof. Let us initialize W ′ to W . The greedy algorithm
proceeds in rounds. In round i we set Qi = {all vertices
with indegree 0 in G[W ′]}. Then Qi is added to Q,
and its vertices are removed from W ′. We halt when
W ′ = ∅. It is easy to see that each Qi is indeed an
antichain. Let q be the number of antichains produced
by the algorithm and let h be the height of G[W], that is

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited280

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

the size of its longest chain. We have that h ≤ q′, since
by Mirsky’s theorem (c.f. [36]) size of any antichain
cover of G[W] is at least h. We also have h = q, since
greedy algorithm reduces the length of longest chain in
G[W ′] by exactly one at each iteration.

The above algorithm can be easily implemented in
time O(n2). Indeed, it is sufficient to maintain the in-
degree of the vertices and update them each time a
vertex is removed. Whenever during an iteration the
in-degree of some vertex v becomes 0 because of the
removal of other vertices, we add v to a list of vertices
to be used in the next round.

We use Lemma 4.2 to transform Q′ into a path-
respecting family of q ≤ q′ ≤ 2n1−x antichains Q =
{Q1, . . . , Qq}. It remains to solve the Q-restricted All-
Pairs LCA problem. To this aim, we use a relatively
simple reduction to Fast Boolean Matrix Multiplication.
Let C = A·B be the product of an n×p Boolean (i.e., 0-
1) matrix A and a p×n Boolean matrix B. The witness
matrix W of this product is an n × n matrix where
W [i, j] is any index k such that A[i, k] = B[k, j] = 1. We
conventionally set W [i, j] = −∞ if no such index exists.
Recall that the time needed to compute C is denoted by
MM(n, p, n). A mild adaptation of the algorithm and
analysis in [3] shows that we can computeW roughly in
the same amount of time.

Theorem 4.1. (Folklore, corollary of [3]) The
witness matrix W of the product C = A ·B of an n× p
Boolean matrix A and a p × n Boolean matrix B can
be computed in time Õ(MM(n, p, n)) by a deterministic
algorithm.

Our algorithm works as follows (see also the pseudo-
code in Algorithm 6). We initialize lcaQ(·, ·) with
−∞. Then we consider the antichains Qq, . . . , Q1 in
this order. For each Qi and each pair of vertices
u, v with lcaQ(u, v) = −∞, we check if Qi contains a
common ancestor w of v and u, in which case we set
lcaQ(u, v) = w. In order to perform efficiently this step
we build an n×nx matrix A whose rows are indexed by
vertices in V and whose columns are indexed by vertices
in Qi. We set entry A[v, w] to 1 if w is an ancestor of
v and to 0 otherwise2. We compute the product A ·AT
and its witness matrix W . Notice that the pair u, v
has a common ancestor w in Qi iff A · AT [u, v] 6= 0, in
which case W [u, v] contains one such vertex. Thus it is
sufficient to set lcaQ(u, v) = W [u, v].

Lemma 4.3. The Q-restricted All-Pairs LCA problem
can be solved in time Õ(n1−x+ω(1,x,1)).

2Padding with zeros the columns not corresponding to vertices
in Qi.

Algorithm 6 Compute lcaQ(u, v) for all pairs of ver-
tices u, v ∈ V .
Input: Transitive closure graph G = (V,E), and a
family of antichainsQ = {Q1, . . . , Qq} of G that is path-
respecting such that q ≤ 2n1−x.
Output: Q-restricted LCA lcaQ(u, v) for each pair of
vertices u, v ∈ V . Initialize lcaQ(·, ·) with −∞.
1: for i = q, . . . , 1 do
2: Initialize an n× nx matrix A with zeros
3: Let φi : Qi

1:1−−→ {1, . . . , |Qi|} be an arbitrary
bijection and φ−1i (·) be its inverse function

4: for all x ∈ V, y ∈ Qi such that (x, y) ∈ E do
5: A[x, φi(y)]← 1
6: end for
7: Compute A ·AT , and its witness matrix W
8: for all u, v ∈ V, u 6= v do
9: if lcaQ(u, v) = −∞ and A ·AT [u, v] 6= 0 then

10: lcaQ(u, v)← φ−1i (W [u, v])
11: end if
12: end for
13: end for

Proof. Consider the above algorithm (pseudo-code in
Algorithm 6). Its running time is upper bounded by
Õ(
∑q
i=1 MM(n, |Qi|, n)). Assume w.l.o.g. that |Qi| is

non-increasing, then |Qi| ≤ n/i, and by monotonicity of
MM(n, ·, n)

q∑
i=1

MM(n, |Qi|, n) ≤
q∑
i=1

MM(n, n/i, n)

≤
log q∑
j=0

2jMM(n, n/2j , n)

≤ (1 + log q) · q ·MM(n, n/q, n)

∈ Õ(n1−x+ω(1,x,1)).

For the correctness, assume by contradiction that
for some pair of vertices u, v the computed value
lcaQ(u, v) is not correct. Notice that lcaQ(u, v) = −∞
iff u and v have no common ancestor in Q, hence we
can assume w.l.o.g. lcaQ(u, v) = w for some w in some
Qi. The contradiction implies that there exists a com-
mon ancestor w′ ∈ Qj of u and v which is a descendant
of w (in particular, (w,w′) ∈ E since G is a transitive
closure). Notice that j 6= i since Qi is an anti-chain. By
construction u and v do not have any common ancestor
in Qi+1, . . . , Qq since otherwise at the time when Qi is
considered we would have lcaQ(u, v) 6= −∞. Hence it
must be the case that j < i. This is a contradiction
since the existence of the pair w,w′ shows that Q is not
path-respecting.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited281

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

4.3 Patching the LCAs Together Suppose we are
given values lcaP(·, ·) and lcaQ(·, ·) as computed in pre-
vious sections. Let us also assume that vertices are la-
beled from 1 to n according to an arbitrary topologi-
cal ordering. The following approach to solve All-Pairs
LCA might be tempting: for each pair u, v ∈ V , we
simply set lca(u, v) = max{lcaP(u, v), lcaQ(u, v)}. Un-
fortunately this approach does not work, as illustrated
in Figure 1. Intuitively, the issue is that in the computa-
tion of lcaQ(u, v) the algorithm can return any vertex w
in some Qi which is a common ancestor of u and v, not
necessarily the one with largest index in Qi. This flex-
ibility is essential to achieve the claimed running time:
computing w with the largest index in Qi would require
a max-witness computation, and the best-known algo-
rithms for the latter problem are substantially slower
than Boolean matrix multiplication.

In order to circumvent this problem, we will com-
pute (in O(n2) time) a more structured topological or-
der. Using this particular order rather than an arbi-
trary topological order, guarantees that the above ap-
proach works. In particular, our goal is to define a
topological order such that, if lcaP(u, v) appears later
than lcaQ(u, v) in this order, then there is no path
from lcaP(u, v) to any Q-restricted LCA for u, v, and
vice versa.

Definition 4.3. Let G = (V,E) be a transitive closure
graph and Q = {Q1, . . . , Qq} a path-respecting family
of antichains of G. A Q-compact topological order of
the vertices in V is a topological order such that all
vertices in an antichain Qi ∈ Q appear consecutively
and a vertex in Qi appears earlier than a vertex in Qj,
for i < j.

Lemma 4.4. Given a transitive closure graph G =
(V,E) and a path-respecting family of antichains Q,
we can compute a Q-compact topological order of G in
time O(n2).

Proof. For notational convenience, let us define a
dummy set Q0 = ∅. The algorithm proceeds in rounds.
At the beginning of round i ≥ 0 we are given a current
subset of vertices W and a partial topological ordering
R (implemented as list) of the remaining vertices V \W .
Initially W = V and R is empty. During round i we ap-
pend the vertices of Qi to R in any order and remove
them from W . Then we iteratively identify the sources
Si in G[W \

(⋃
i<j≤q Qj

)
], append the vertices Si to R

in any order, and finally remove them from W .
In order to implement the above algorithm in O(n2)

time, we can use an approach similar to the proof of
Lemma 4.2, where we keep track of vertices whose in-
degree becomes zero after the removal of other vertices.

Algorithm 7 Compute lcaV(u, v) for all pairs of ver-
tices u, v ∈ V .
Input: DAG Ginput = (V,Einput)
Output: lca(u, v) for each pair of vertices u, v ∈ V
1: Compute the transitive closure graph G = (V,E) of
Ginput

2: Use Algorithm 1 to compute a (nx, 2n1−x)-
decomposition into a family of chains P =
{P1, . . . , Pp} with p ≤ nx and a family of antichains
Q′ = {Q′1, . . . , Q′q′} with q′ ≤ 2n1−x.

3: Use Lemma 4.2 with input Q′ to compute a path-
respecting family of antichains Q = {Q1, . . . , Qq} of
G where q ≤ 2n1−x.

4: Compute a Q-compact topological order of G using
Lemma 4.4 and rename vertices so that they are
1, . . . , n according to this order

5: Use Algorithm 5 to compute P-restricted LCA
lcaP(u, v) for each pair of vertices u, v ∈ V

6: Use Algorithm 6 to compute Q-restricted LCA
lcaQ(u, v) for each pair of vertices u, v ∈ V

7: for all u, v ∈ V, u 6= v do
8: lca(u, v)← max{lcaQ(u, v), lcaP(u, v)}
9: end for

For the correctness, trivially by construction the
indexes of the vertices in the same anti-chain Qi are
consecutive, and the indexes in Qi are smaller than the
indexes in Qj for j > i. Hence it remains to show
that R defines a topological order at the end of the
algorithm. Suppose by contradiction that there exists
an edge (x, y) ∈ E such that x is placed after y in R.
Let y ∈ Si ∪ Qi for some i. Assume by contradiction
that y ∈ Si. Then it must be the case that x ∈ Qi or x
was removed in some earlier iteration. Indeed otherwise
y would not be a source. In both cases x would appear
earlier than y in R. It therefore remains to consider the
case y ∈ Qi, i ≥ 1. Assume that x ∈ Qj for some j. The
fact that Q is path-respecting implies that j < i. This
means that x is added to R in some earlier iteration, a
contradiction. So the remaining case is that x ∈ Sj for
some j ≥ i. Notice that vertices in Sj become sources
right after the removal of vertices in Qj (otherwise they
would be sources at some earlier round). In particular,
there must exist some parent w of x in Qj . Notice that
w ∈ Qj is an ancestor of y ∈ Qi (hence (w, y) ∈ E),
and j ≥ i. This contradicts the fact that Q is path-
respecting.

This concludes the description of our algorithm
for the All-Pairs LCA problem in DAGs (see also the
pseudo-code in Algorithm 7).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited282

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Theorem 4.2. (Main Theorem) All-Pairs LCA in
DAGs can be solved in time Õ(nγ), where γ = 1 + 2x
and x is the solution of the equation 3x = ω(1, x, 1).

Proof. Consider the above All-Pairs LCA algorithm (for
pseudo-code see Algorithm 7). The running time of the
algorithm is Õ(nω + n

ω(1,x,1)+2+x
2 + n1−x+ω(1,x,1)) for a

fixed x ∈ [0, 1]. The claimed running time is obtained by
imposing ω(1,x,1)+2+x

2 = 1−x+ω(1, x, 1), and observing
that ω ≤ ω(1, x, 1) + 1− x for any x ≥ 0.

For the correctness assume by contradiction that
w = lca(u, v) is not a correct answer. Notice that if
u and v have no common ancestor, by construction
w = −∞ and the answer is correct. So we can
assume that w is an index of some vertex. Assume
first w = lcaP(u, v). By contradiction assume that
w′ is some descendant of w which is also a common
ancestor of u and v. Notice that w′ > w since we
consider a topological order. The correctness of the
P-restricted All-Pairs LCA algorithm implies that w′
is contained in Q. In particular w′ ∈ Qi for some i.
Since the considered topological order is Q-compact, all
vertices in Qi appear after w in the topological order
(in particular, they have larger indices than w). Since
Qi contains at least one common ancestor of u and v
(namely, w′), by construction lcaQ(u, v) is contained in
Qj for some j ≥ i. Since the topological order is Q-
compact, this implies lcaQ(u, v) > w. Hence we get a
contradiction w = lcaP(u, v) ≥ lcaQ(u, v) > w.

The case that w = lcaQ(u, v) is symmetric. In
particular, any descendant w′ of w which is a common
ancestor of u and v must be contained in P, and w′ > w.
By construction we have lcaP(u, v) ≥ w′. Hence we get
a contradiction w = lcaQ(u, v) ≥ lcaP(u, v) ≥ w′ > w.

5 Missing proofs from Section 3.
Lemma 5.1. After each execution of insert(), delete()
or move(), Invariant 3.2 is satisfied.

Proof. We prove the claim by induction on the number
of operations. In particular we will assume that the
considered operation is the k-th one, and the invariant
holds before its execution. Notice that the invariant is
trivially satisfied before the first execution of any such
operation (when G′ and the layers L′i are empty).
(1) Consider the first part of the claim. Clearly if the
k-th operation is delete(v) or move(v), the claim holds.
In case of insert(v), the inductive hypothesis guarantees
that all parents of v in G′ are in level h − 1 or lower.
Hence v is inserted in layer h or lower. For the second
part of the claim, assume inductively that L′h is empty

[6]

[4]

[3]

[2]
a

b

c d

u v

[1]

[5]

Figure 1: An example of a topological order in a
transitive closure graph G that is not suitable for
combining the Q-restricted LCA and the P-restricted
LCA for the pair of vertices u, v. The family of chains
in G is P = {{a, b}} and the path-respecting family of
antichains is Q = {{c, d}, {u, v}}. The index of each
vertex in the topological order is in brackets next to
each vertex. It might happen that lcaP(u, v) = b and
lcaQ(u, v) = c, in which case the algorithm would return
the incorrect answer lca(u, v) = b.

before the execution of some insert() (this is true at the
beginning). Observe that the only operation that can
add some vertex w to L′h is insert(w). Vertex w is deleted
right after the insert(w) operation, since we always test
whether L′h 6= ∅ and, if so, the algorithm retrieves and
removes (the reverse of) a path that is traversed starting
from w and following a parent of each visited vertex
(this path always includes w). Furthermore delete()
and move() never add vertices to L′h. Hence before the
execution of the next insert() the set L′h is empty as
required.

(2) Clearly if the k-th operation is delete(v) the claim
holds. If the k-th operation is move(v) or insert(v) by
inductive hypothesis at most one layer L′i can reach
size `, while all other layers have the same or smaller
size after the operation. Notice that we give priority to
the delete() operations over the move() operations, and
hence once |L′i| = ` and all vertices of L′i are inserted
into DEL, no further points are inserted into L′i until
it is fully empty. Thus, all vertices of L′i are deleted
before the next execution of a move() or insert(). The
claim then holds.

(3) This is the most delicate claim. The claim trivially
holds if the k-th operation is delete(v), and it holds by
construction if it is insert(v). Next assume that the k-th
operation is move(v), and let v ∈ L′i at the time of its

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited283

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

execution. By inductive hypothesis all parents of v are
of level at most i − 1 at that time, and the procedure
considers all the parents of v in G′ of level at most
i − 2. Hence assume by contradiction that v has some
parent in G′ of level i− 1 when move(v) is executed (in
which case the invariant is violated). Suppose that the
operation that added v to MOVE is the k′-th one, k′ < k.
Observe that this operation is either a move(w) or a
delete(w) for some w ∈ L′i−1. Since by assumption v ∈
G′ at the time of execution of move(v), by construction
the level of v remains i during all the intermediate
operations k′ + 1, . . . , k − 1. Furthermore, L′i−1 does
not contain any parent of v before the execution of the
first such intermediate operation, hence at that time
the parents of v are in level i − 2 or lower. Therefore,
any intermediate operation which is a move() or delete()
keeps the invariant that the parents of v are in level i−2
or lower as every move() operation can only decrease the
level of a vertex. Any intermediate operation which is
an insert() cannot add a parent of v at all, since vertices
are inserted in topological order. Hence L′i−1 does not
contain parents of v at the time of the execution of
move(v), a contradiction.
(4) This case trivially follows by case (3) of the invariant.
(5) By induction, the invariant was satisfied right before
the last execution of insert(v). We claim that after
any operation the list MOVE contains all vertices for
which this invariant is not satisfied. Right before the
last insert(v) operation, MOVE = ∅. The insert(v)
operation simply adds v either to layer L′1 if there is no
parent of v in G′, or to layer Lh(v) such that Lh(v)−1
contains a parent of v. Clearly, the claim holds as
MOVE = ∅ and the invariant is satisfied for v. Consider
now a delete(v) operation on a vertex v ∈ L′i. The
additional vertices that violate the invariant after this
operation are the vertices u ∈ L′i+1 whose only parent
in L′i is v. Recall, we keep track of the parent of u in
L′i in the list Lnext(w). Since delete(v) tests whether
Lnext(u) = ∅ after removing v from L′i for all children
u of v in L′i+1, all these vertices are correctly inserted
to MOVE. Thus, the claim holds also after a delete(v)
operation. Finally, we consider the case of a move(v)
operation. The move(v) first removes a vertex v from
a list Li. At the first stage of move(v), similarly to the
delete(v) operation, the additional vertices that violate
the invariant are the vertices u ∈ L′i+1 whose only
parent in L′i is v. Arguing in the exact same way as
the delete(v) operation, all the additional vertices that
violate the invariant (i.e., the ones that are not already
in MOVE) are correctly added to MOVE. To complete
our claim, notice that (similarly to insert()) move(v)
adds v to either adds v to layer L′1 if there is no parent
of v in G′, or to L′h(v) such that L′h(v)−1 contains a

parent of v. Hence, the invariant is satisfied for v after
move(v), and therefore our claim holds. The proof of
the invariant follows by the fact that MOVE = ∅ right
before an insert(v) operation.

Lemma 5.2. The above algorithm (pseudo-code in Al-
gorithm 1) takes O(n2) time.

Proof. The running time is dominated by the execution
of the operations insert(), delete() and move(). We
execute delete(v) at most once on each v ∈ V . Assume
v ∈ L′i at time of execution. This operation requires
to remove v from |Lprev(v)| lists Lnext(w) of vertices
w ∈ L′i+1: notice that we maintain pointers to the
occurrence of v in each of these lists Lnext(w), hence
this operation can be performed in time O(`) since by
Invariant 3.2 |Lprev(v)| ≤ |L′i+1| ≤ `. For i ≥ 1,
we also need to remove v from the list Lprev(u) of
some u ∈ Li−1. The same invariant guarantees that
|Lprev(u)| ≤ |L′i| ≤ `, and the fact that we store pointers
of the occurrence of v in each of these lists Lprev(u), and
hence this step also takes O(`) time. Thus the total cost
of delete() operations is O(n`).

Similarly, insert(v) is executed at most once on each
v ∈ V , and this operation can be easily performed in
time O(n). Hence the total cost of insert() operations
is O(n2).

It remains to consider the cost of move() operations.
Let us focus on the operations of type move(v) for a
specific vertex v (notice that the same vertex v can be
moved multiple times). Assume v ∈ L′i at that time,
and v is moved to layer L′j . Recall that by construction
j < i. Similarly to the delete(v) case, we spend O(`)
time to remove v from affected lists Lnext(w), w ∈ L′i+1,
and Lprev(u), u ∈ L′i−1. Analogously, we spend O(`)
time to create the new list Lnext(v) and O(1) time to
update Lprev(u) for some u ∈ L′j−1. The rest of the
operations can be easily performed in time O(`) for
each level between i + 2 and j − 1. Hence the cost of
this operation move(v) is O((j − i)`). Since the largest
possible level of a vertex v on which we execute move(v)
is h − 1, a simple sum argument shows that the total
cost of move(v) operations involving the same vertex
v is O(h`) = O(n). Hence the total cost of move()
operations is O(n2).

6 Rectangular max,min-product
Recall the definition of dominance product of two ma-
trices A,B: (A > B)[i, j] = maxk min(A[i, k], B[k, j]).
In the following, we find useful the dominance product:
A<B as (A<B)[i, j] = |{k : A[i, k] < B[k, j]}|.

Lemma 6.1. (c.f. Thm 3.1 in [19]) If A and B are
respectively n × p and p × n matrices with m1 and m2

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited284

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

non (−∞) elements, then A < B can be computed in
time Õ(MM(n, p, n) +m1m2/p).

Proof. By reductions presented in [44] (see [30] for al-
ternative exposition), dominance product reduces to
O(log n) Hamming products with the reduction preserv-
ing dimensions and sparsity. We thus have to compute
O(log n) sparse Hamming products, with dimensions
n × p and p × n, and sparsity m1 and m2 respectively.
By folklore reduction (see full version of [30] for exposi-
tion), each such product reduces to n× (np) vs (np)×n
matrix product with sparsity m1 and m2 respectively.
By techniques of [47], such product can be computed
by decomposing into “dense” matrix product with cost
MM(n, p, n) (packing p densest columns of first matrix,
and p densest rows of second matrix), and “sparse” ma-
trix product with total cost m1m2/p.

We provide following theorem for completeness (note,
that we provide version with extra log factor, for the
sake of shortening the proof).

Theorem 2.1. (Corollary of [19]) If A and B are
respectively n×p and p×n matrices, then the A>B prod-
uct can be computed in time Õ(

√
MM(n, p, n) · n2p).

Proof. Let L denote set of all the values in A and B
of size 2np (w.l.o.g. all the values are distinct). We
then partition L into L1, . . . , Lt, where each Lr contains
at most d2np/te consecutive values from L. We then
construct sparse matrices A1, . . . , At and B1, . . . , Bt of
dimensions n× p and p× n, such that:

Ar[i, j] =

{
A[i, j] if A[i, j] ∈ Lr
∞ otherwise

Br[i, j] =

{
B[i, j] if B[i, j] ∈ Lr
−∞ otherwise

For each Ar, a row-balancing operation is applied (see
Definition 2.1, [19]), producing A′r and A′′r , each of
dimension n× p with O(p/t) elements in each row that
are not ∞.

By construction from Theorem 3.3 in [19], we
need to compute, for each r: Ar < B, A′r < B and
A′′r < B. Each such product reduces to: multiplication
of Boolean matrices of dimension n × p with p × n,
and sparse dominance product of dimension n × p
with p × n and density m1 = m2 = O(np/t). By
Lemma 6.1, this takes Õ(MM(n, p, n) + n2p/t2) for
each product. The postprocessing phase takes O(p/t)
time for each n2 elements of the output. The total
time is then Õ(MM(n, p, n)t + n2p/t), so setting t =√
n2p/MM(n, p, n) implies the runtime bound.

7 Faster decomposition in sparse graphs.
We observe that our decomposition algorithm can be
implemented more efficiently in sparse graphs (more
precisely, wheneverm/`� n). This is not critical in our
application, since the number of edges will be Θ(n2) in
our case. However, since this might be helpful in other
applications, we give the details in the following.

Theorem 7.1. Let G = (V,E) be a DAG with n
vertices and m edges, represented via adjacency lists,
and let ` ∈ [1, n] be an integer parameter. Then
there exists an O(mn`) time deterministic algorithm to
compute an (`, 2n`) decomposition of G.

Proof. We modify the above algorithm as follows. We
do not compute the adjacency matrix of G, and we
compute the topological order of G in time O(m + n).
In each insert(v) operation, we simply scan the in-
neighbors of v and check in which layer they are to
identify the layer where v has to be inserted. We
similarly modify the involved lists Lnext() and Lprev().
Hence we can perform this operation in time O(deg(v)),
where deg(v) is the degree of v in G. Similarly, for
each delete(v) operation, v ∈ L′i, we consider the out-
neighbors of G and check which ones belong to L′i+1.
Hence also this operation can be performed in time
O(deg(v)). Thus insert() and delete() operations cost
O(m) in total. In each move(v) operation we consider
all parents of v and identify the lowest layer of any such
parent. Hence this operation can be implemented in
O(deg(v)) time. By construction each time we execute
move(v), v is moved to a strictly lower level. Since
the largest level of a vertex v on which we execute
move(v) is h−1, we can perform this operation at most
h − 2 times. So the total cost of move() operations is
O(
∑
v∈V deg(v)n`) = O(mn`). The claim follows.

8 Faster LCA for smaller set of queries.
We now show that if one is interested in computing the
LCA for all pairs of vertices from a subset S ⊂ V of the
vertices, where |S| = O(nδ), δ ≤ 1, we can modify the
algorithm from Section 4 to run faster. We refer to this
problem as the S-pairs LCA problem.

On a high-level, the algorithm remains the same.
Let Ginput be the input DAG. We first compute in
O(nω) the transitive closure of G, and solve the S-
pairs LCA problem on G. Then, we compute in O(n2)
time an (nx, 2n1−x)-decomposition (P,Q) of G with the
algorithm from Theorem 3.1. Again, the parameter x
will be fixed later on to optimize the running time of
the algorithm.

Incorporating theW -restricted LCAs to the context
of the S-pairs LCA problem, we give the following
definition.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited285

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Algorithm 8 Compute lcaP(u, v) for all pairs of ver-
tices u, v ∈ S.
Input: Transitive closure graph G = (V,E), a subset
S ⊂ V of vertices, and a family of chains P =
{P1, . . . , Pp} of G where p ≤ nx.
Output: P-restricted LCA lcaP(u, v) for each pair of
vertices u, v ∈ S.
1: Initialize lcaP(·, ·) with −∞
2: Let A be a |S| × p matrix
3: for Pi ∈ P do
4: for v ∈ S do
5: Let wi(v) be the parent of v in Pi with the

largest index, otherwise wi(v) = −∞
6: Set A[v, i]← wi(v)
7: end for
8: end for
9: Compute the (max,min)-product A>AT

10: for all u, v ∈ S, u 6= v do
11: lcaP(u, v)← (A>AT)[u, v]
12: end for

Definition 8.1. Given a DAG G = (V,E), and two
subsets of vertices W,S ⊆ V , the W -restricted S-Pairs
LCA problem is to compute lcaW (u, v) ∈ LCAW (u, v)
for all pairs of vertices u, v ∈ S (lcaW (u, v) = −∞ if
LCAW (u, v) = ∅).

Similarly to Section 4, we compute a solution to the
P-restricted and Q-restricted S-Pairs LCA problems
(that is, the values lcaP(u, v) and lcaQ(u, v) for all pairs
of vertices u, v ∈ S), and later on combine these solu-
tions to compute a solution to the S-pairs LCA problem.
Again, we set lca(u, v) = max{lcaP(u, v), lcaQ(u, v)},
where the labels of the vertices respect a Q-compact
topological order, where Q is a path-respecting family
of antichains of G. Throughout the section, we assume
the vertices are are labeled with integers 1, . . . , n ac-
cording to a Q-compact topological order.

While the modifications to the algorithm from Sec-
tion 4 are straightforward, and the proof of correctness
is essentially the same, we still spell-out the details for
completeness.

The first modifications are in the algorithms that
compute the solutions to the P-restricted and Q-
restricted S-Pairs LCA problems. The modified version
of Algorithm 5 is presented in Algorithm 8 and its proof
in Lemma 8.1, while the modified version of Algorithm 6
is presented in Algorithm 9 and its proof in Lemma 8.2.

Lemma 8.1. Algorithm 8 computes for each pair of
vertices u, v ∈ S, |S| = nδ, a P-restricted LCA
lcaP(u, v). The algorithm runs in Õ(n

ω(δ,x,δ)+2δ+x
2).

Algorithm 9 Compute lcaQ(u, v) for all pairs of ver-
tices u, v ∈ V .
Input: Transitive closure graph G = (V,E), a subset
S ⊂ V of the vertices, and a family of antichains
Q = {Q1, . . . , Qq} of G that is path-respecting such
that q ≤ 2n1−x.
Output: Q-restricted LCA lcaQ(u, v) for each pair of
vertices u, v ∈ V .
1: Initialize lcaQ(·, ·) with −∞
2: for i = q, . . . , 1 do
3: Initialize a |S| × nx matrix A with zeros
4: Let φi : Qi

1:1−−→ {1, . . . , |Qi|} be an arbitrary
bijection and φ−1i (·) be its inverse function

5: for all x ∈ |S|, y ∈ Qi such that (x, y) ∈ E do
6: A[x, φi(y)]← 1
7: end for
8: Compute A ·AT , and its witness matrix W
9: for all u, v ∈ S, u 6= v do

10: if lcaQ(u, v) = −∞ and A ·AT [u, v] 6= 0 then
11: lcaQ(u, v)← φ−1i (W [u, v])
12: end if
13: end for
14: end for

Proof. The proof of correctness follows from Lemma 4.1.
We now show the proof for the running time. For each
vertex v this can be done in O(n) time for all Pi by
scanning all incoming edges from v, and in O(n2) for all
vertices in S and all Pi, 1 ≤ i ≤ p.

The (max,min) matrix multiplication A > AT ,
where A is an nδ × nx, can be performed in time
Õ(n

ω(δ,x,δ)+2δ+x
2), by Theorem 2.1. The time to compute

the (max,min) matrix product dominates the running
time of Algorithm 5.

Lemma 8.2. Algorithm 9 computes the Q-restricted
LCA lcaQ(u, v) ∈ Qi for each pair of vertices u, v ∈
S ⊆ V, |S| = nδ. The algorithm runs in time
Õ(n1−x+ω(δ,x,δ)).

Proof. The proof of correctness follows from Lemma 8.2.
Initializing the nδ×nx dimensional matrix A for all q =
2n1−x iterations take O(nδn) ∈ O(n2) time. We apply
n1−x rectangular Boolean matrix multiplications A ·AT
and witnesses. The running time of the algorithm is
upper bounded by Õ(

∑q
i=1 MM(nδ, |Qi|, nδ)). Assume

w.l.o.g. that |Qi| is non-increasing, then |Qi| ≤ n/i, and

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited286

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Algorithm 10 Compute lca(u, v) for all pairs of vertices
u, v ∈ S
Input: DAG Ginput = (V,Einput)
Output: lca(u, v) for each pair of vertices u, v ∈ S
1: Compute the transitive closure graph G = (V,E) of
Ginput

2: Use Algorithm 1 to compute a (nx, 2n1−x)-
decomposition into a family of chains P =
{P1, . . . , Pp} with p ≤ nx and |Pi| ≤ n1−x and
a family of antichains Q′ = {Q′1, . . . , Q′q′} with
q′ ≤ 2n1−x

3: Use Lemma 4.2 with input Q′ to compute a path-
respecting family of antichains Q = {Q1, . . . , Qq} of
G where q ≤ 2n1−x

4: Compute a Q-compact topological order of G using
Lemma 4.4 and rename vertices so that they are
1, . . . , n according to this order

5: Use Algorithm 5 to compute P-restricted LCA
lcaP(u, v) for each pair of vertices u, v ∈ S

6: Use Algorithm 6 to compute Q-restricted LCA
lcaQ(u, v) for each pair of vertices u, v ∈ S

7: for all u, v ∈ S, u 6= v do
8: lca(u, v)← max{lcaQ(u, v), lcaP(u, v)}
9: end for

by monotonicity of MM(nδ, ·, nδ)

q∑
i=1

MM(nδ, |Qi|, nδ) ≤
q∑
i=1

MM(nδ, n/i, nδ)

≤
log q∑
j=0

2jMM(nδ, n/2j , nδ)

≤ (1 + log q) · q ·MM(nδ, n/q, nδ)

∈ Õ(n1−x+ω(δ,x,δ)).

Theorem 8.1. Algorithm 10 computes for all pairs of
vertices u, v ∈ S a LCA lca(u, v). If |S| = nδ,
then the algorithm runs in time O(nω + n1−x+ω(δ,x,δ) +

n
ω(δ,x,δ)+2δ+x

2).

Proof. Let |S| = O(nδ). The proof for correctness fol-
lows from Theorem 4.2. The running time of the algo-
rithm is trivially Õ(nω + n

ω(δ,x,δ)+2δ+x
2 + n1−x+ω(δ,x,δ))

for a fixed x ∈ [0, 1].

What is now left is to find optimal value of x as a
function of δ. Balancing the cost terms, we need to have
1− x+ ω(δ, x, δ) = ω(δ,x,δ)+2δ+x

2 which is equivalent to

2−2δ
δ +ω(1, xδ , 1) = 3xδ . (Here we are using ω(at, bt, ct) =

t · ω(a, b, c) property which holds for any a, b, c, t ≥ 0.)
Using square matrix multiplication as a subroutine to
implement rectangular matrix multiplication (i.e., the
bound in (2.1)), one obtains x = 2

5−ω and γ′ = 2δ +
4

5−ω − 1 ≤ 2δ + 0.522571. As usual, one can do better
using more refined rectangular matrix multiplication
algorithms. In particular, using the bound in (2.2),
one gets x = 2−βαδ

3−β , γ′ = 2(2−βαδ)
3−β + 2δ − 1 ≤

0.6282973594 + 1.86112061279δ. If instead we apply
the bound (2.3), we get γ′ ≤ 0.711508 + 1.73504δ for
x = 0.855754− 0.132478δ.

The running time becomes Õ(nω) for |S| = nδ and:
δ ≤ ω+1

2 − 2
5−ω < 0.925146 if bound (2.1) is used,

δ ≤ (ω+1)(3−β)−4
2(3−β)−2βα < 0.937374 using the bound in (2.2)

and δ ≤ 0.957531 if we apply the bound (2.3) (given
current bounds on ω(1, ·, 1)).

9 Conclusions and Open Problems
To the best of our knowledge, All-Pairs LCA is the first
example of a natural graph problem with an algorithm
based on fast matrix multiplication, which has a running
time strictly between Ω(n2) and O(n2.5), under the
assumption ω = 2. This might suggest that a faster
algorithm exists (e.g., with a running time of Õ(nω)).
Alternatively, it would be interesting to derive fine-
grained lower bounds based on All-Pairs LCAs in DAGs.

A simple greedy algorithm for decomposing a DAG
into O(

√
n) chains and antichains runs in time O(n2.5)

for dense graphs. Our algorithm improves this bound
to O(n2). In the similar problem of decomposing a
sequence into O(

√
n) monotonic subsequences, a naive

greedy algorithm works in time O(n1.5 log(n)). Yehuda
and Fogel improved this to O(n1.5) [5] and there has
been no further progress ever since. It was also noted
by Jørgensen and Pettie that this is a natural example
of a problem with a large (Ω̃(

√
n)) gap between the

current algorithmic and decision-tree complexity [25].
Therefore, it would be interesting to see if the techniques
developed in this paper can be used to improve the time
complexity of sequence decomposition. Alternatively,
one could further investigate the relationship between
the two problems in order to prove some lower bounds.

Acknowledgments The authors would like to thank
Adam Polak for insightful discussions.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On
finding lowest common ancestors in trees. In STOC
1973, pages 253–265.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited287

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

[2] N. Alon, Z. Galil, and O. Margalit. On the exponent of
the all pairs shortest path problem. J. Comput. Syst.
Sci., 54(2):255–262, 1997.

[3] N. Alon, Z. Galil, O. Margalit, and M. Naor. Witnesses
for boolean matrix multiplication and for shortest
paths. In FOCS 1992, pages 417–426.

[4] D. Arroyuelo, F. Claude, R. Dorrigiv, S. Durocher,
M. He, A. López-Ortiz, J. I. Munro, P. K. Nicholson,
A. Salinger, and M. Skala. Untangled monotonic chains
and adaptive range search. In ISAAC, volume 5878
of Lecture Notes in Computer Science, pages 203–212.
Springer, 2009.

[5] R. Bar-Yehuda and S. Fogel. Partitioning a sequence
into few monotone subsequences. Acta Informatica,
35(5):421–440, 1998.

[6] H. Barr, T. Kopelowitz, E. Porat, and L. Roditty.
{−1, 0, 1}-APSP and (min, max)-product problems.
CoRR, abs/1911.06132, 2019.

[7] M. A. Bender and M. Farach-Colton. The LCA
problem revisited. In LATIN 2000, volume 1776 of
Lecture Notes in Computer Science, pages 88–94.

[8] M. A. Bender, M. Farach-Colton, G. Pemmasani,
S. Skiena, and P. Sumazin. Lowest common ancestors
in trees and directed acyclic graphs. J. Algorithms,
57(2):75–94, 2005.

[9] M. A. Bender, G. Pemmasani, S. Skiena, and
P. Sumazin. Finding least common ancestors in di-
rected acyclic graphs. In SODA 2001, pages 845–854.

[10] A. Brandstädt and D. Kratsch. On partitions of per-
mutations into increasing and decreasing subsequences.
J. Inf. Process. Cybern., 22(5/6):263–273, 1986.

[11] K. Bringmann, M. Künnemann, and K. Węgrzycki.
Approximating APSP without scaling: equivalence of
approximate min-plus and exact min-max. In STOC
2019, pages 943–954.

[12] F. Claude, J. I. Munro, and P. K. Nicholson. Range
queries over untangled chains. In SPIRE, volume 6393
of Lecture Notes in Computer Science, pages 82–93.
Springer, 2010.

[13] K. Cohen and R. Yuster. On minimum witnesses
for boolean matrix multiplication. Algorithmica,
69(2):431–442, 2014.

[14] R. W. Cottingham, R. M. Idury, and A. A. Schäffer.
Faster sequential genetic linkage computations. Amer-
ican Journal of Human Genetics, 53:252–263, 1993.

[15] A. Czumaj, M. Kowaluk, and A. Lingas. Faster
algorithms for finding lowest common ancestors in
directed acyclic graphs. Theor. Comput. Sci., 380(1-
2):37–46, 2007.

[16] S. K. Dash, S. Scholz, S. Herhut, and B. Christianson.
A scalable approach to computing representative low-
est common ancestor in directed acyclic graphs. Theor.
Comput. Sci., 513:25–37, 2013.

[17] R. Duan, Y. Gu, and L. Zhang. Improved time bounds
for all pairs non-decreasing paths in general digraphs.
In ICALP 2018, pages 44:1–44:14.

[18] R. Duan, C. Jin, and H. Wu. Faster algorithms for all
pairs non-decreasing paths problem. In ICALP 2019,

pages 48:1–48:13.
[19] R. Duan and S. Pettie. Fast algorithms for (max, min)-

matrix multiplication and bottleneck shortest paths. In
SODA 2009, pages 384–391, 2009.

[20] L. Duraj, K. Kleiner, A. Polak, and V. V. Williams.
Equivalences between triangle and range query prob-
lems. In SODA 2020, pages 30–47.

[21] P. Erdös, J. G. Gimbel, and D. Kratsch. Some extremal
results in cochromatic and dichromatic theory. Journal
of Graph Theory, 15(6):579–585, 1991.

[22] F. V. Fomin, D. Kratsch, and J. Novelli. Approx-
imating minimum cocolorings. Inf. Process. Lett.,
84(5):285–290, 2002.

[23] D. Harel and R. E. Tarjan. Fast algorithms for
finding nearest common ancestors. SIAM J. Comput.,
13(2):338–355, 1984.

[24] P. Indyk, M. Lewenstein, O. Lipsky, and E. Porat.
Closest pair problems in very high dimensions. In
ICALP 2004, pages 782–792.

[25] A. G. Jørgensen and S. Pettie. Threesomes, degener-
ates, and love triangles. In FOCS 2014, pages 621–630.
IEEE Computer Society.

[26] M. Kowaluk and A. Lingas. LCA queries in directed
acyclic graphs. In ICALP 2005, pages 241–248.

[27] M. Kowaluk and A. Lingas. Unique lowest common
ancestors in dags are almost as easy as matrix multi-
plication. In ESA 2007, pages 265–274.

[28] M. Kowaluk and A. Lingas. Quantum and approxi-
mation algorithms for maximum witnesses of boolean
matrix products. CoRR, abs/2004.14064, 2020.

[29] M. Kowaluk, A. Lingas, and J. Nowak. A path cover
technique for LCAs in dags. In SWAT 2008, pages
222–233.

[30] K. Labib, P. Uznański, and D. Wolleb-Graf. Hamming
distance completeness. In CPM 2019, pages 14:1–
14:17.

[31] F. Le Gall. Algebraic complexity theory and matrix
multiplication. In ISSAC 2014, page 23.

[32] F. Le Gall and F. Urrutia. Improved rectangular ma-
trix multiplication using powers of the Coppersmith-
Winograd tensor. In SODA 2018, pages 1029–1046.

[33] L. Lesniak and H. J. Straight. The cochromatic
number of a graph. Ars Combinatoria, 3:39–46, 1977.

[34] A. Lincoln, A. Polak, and V. V. Williams. Monochro-
matic triangles, intermediate matrix products, and
convolutions. In ITCS 2020, pages 53:1–53:18.

[35] K. Min, M. Kao, and H. Zhu. The closest pair problem
under the hamming metric. In COCOON 2009, pages
205–214.

[36] L. Mirsky. A dual of dilworth’s decomposition theorem.
The American Mathematical Monthly, 78(8):876–877,
1971.

[37] A. A. Schäffer, S. K. Gupta, K. Shriram, and R. W.
Cottingham. Avoiding recomputation in linkage anal-
ysis. Human Heredity, 44:225–237, 1994.

[38] A. Shapira, R. Yuster, and U. Zwick. All-pairs bottle-
neck paths in vertex weighted graphs. In SODA 2007,
pages 978–985.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited288

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

[39] A. J. Stothers. On the complexity of matrix multipli-
cation. 2010.

[40] V. Vassilevska, R. Williams, and R. Yuster. All-pairs
bottleneck paths for general graphs in truly sub-cubic
time. In STOC 2007, pages 585–589.

[41] K. W. Wagner. Monotonic coverings of finite sets. J.
Inf. Process. Cybern., 20(12):633–639, 1984.

[42] V. V. Williams. Multiplying matrices faster than
coppersmith-winograd. In STOC 2012, pages 887–898.

[43] V. V. Williams. Nondecreasing paths in a weighted
graph or: How to optimally read a train schedule.
ACM Trans. Algorithms, 6(4):70:1–70:24, 2010.

[44] V. V. Williams and R. Williams. Finding, minimizing,
and counting weighted subgraphs. SIAM J. Comput.,
42(3):831–854, 2013.

[45] B. Yang, J. Chen, E. Lu, and S. Q. Zheng. A com-
parative study of efficient algorithms for partitioning a
sequence into monotone subsequences. In TAMC 2007,
volume 4484 of Lecture Notes in Computer Science,
pages 46–57.

[46] R. Yuster. Efficient algorithms on sets of permutations,
dominance, and real-weighted APSP. In SODA 2009,
pages 950–957.

[47] R. Yuster and U. Zwick. Fast sparse matrix multipli-
cation. ACM Trans. Algorithms, 1(1):2–13, 2005.

[48] U. Zwick. All pairs shortest paths using bridging
sets and rectangular matrix multiplication. J. ACM,
49(3):289–317, 2002.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited289

D
ow

nl
oa

de
d

01
/1

1/
21

 to
 2

.3
9.

25
0.

23
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 16
 17

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 0
 1

 1

 HistoryList_V1
 qi2base

