2,520 research outputs found

    Structural Deep Embedding for Hyper-Networks

    Full text link
    Network embedding has recently attracted lots of attentions in data mining. Existing network embedding methods mainly focus on networks with pairwise relationships. In real world, however, the relationships among data points could go beyond pairwise, i.e., three or more objects are involved in each relationship represented by a hyperedge, thus forming hyper-networks. These hyper-networks pose great challenges to existing network embedding methods when the hyperedges are indecomposable, that is to say, any subset of nodes in a hyperedge cannot form another hyperedge. These indecomposable hyperedges are especially common in heterogeneous networks. In this paper, we propose a novel Deep Hyper-Network Embedding (DHNE) model to embed hyper-networks with indecomposable hyperedges. More specifically, we theoretically prove that any linear similarity metric in embedding space commonly used in existing methods cannot maintain the indecomposibility property in hyper-networks, and thus propose a new deep model to realize a non-linear tuplewise similarity function while preserving both local and global proximities in the formed embedding space. We conduct extensive experiments on four different types of hyper-networks, including a GPS network, an online social network, a drug network and a semantic network. The empirical results demonstrate that our method can significantly and consistently outperform the state-of-the-art algorithms.Comment: Accepted by AAAI 1

    Signed Network Modeling Based on Structural Balance Theory

    Full text link
    The modeling of networks, specifically generative models, have been shown to provide a plethora of information about the underlying network structures, as well as many other benefits behind their construction. Recently there has been a considerable increase in interest for the better understanding and modeling of networks, but the vast majority of this work has been for unsigned networks. However, many networks can have positive and negative links(or signed networks), especially in online social media, and they inherently have properties not found in unsigned networks due to the added complexity. Specifically, the positive to negative link ratio and the distribution of signed triangles in the networks are properties that are unique to signed networks and would need to be explicitly modeled. This is because their underlying dynamics are not random, but controlled by social theories, such as Structural Balance Theory, which loosely states that users in social networks will prefer triadic relations that involve less tension. Therefore, we propose a model based on Structural Balance Theory and the unsigned Transitive Chung-Lu model for the modeling of signed networks. Our model introduces two parameters that are able to help maintain the positive link ratio and proportion of balanced triangles. Empirical experiments on three real-world signed networks demonstrate the importance of designing models specific to signed networks based on social theories to obtain better performance in maintaining signed network properties while generating synthetic networks.Comment: CIKM 2018: https://dl.acm.org/citation.cfm?id=327174
    • …
    corecore