125,631 research outputs found

    Phase transitions in optimal unsupervised learning

    Full text link
    We determine the optimal performance of learning the orientation of the symmetry axis of a set of P = alpha N points that are uniformly distributed in all the directions but one on the N-dimensional sphere. The components along the symmetry breaking direction, of unitary vector B, are sampled from a mixture of two gaussians of variable separation and width. The typical optimal performance is measured through the overlap Ropt=B.J* where J* is the optimal guess of the symmetry breaking direction. Within this general scenario, the learning curves Ropt(alpha) may present first order transitions if the clusters are narrow enough. Close to these transitions, high performance states can be obtained through the minimization of the corresponding optimal potential, although these solutions are metastable, and therefore not learnable, within the usual bayesian scenario.Comment: 9 pages, 8 figures, submitted to PRE, This new version of the paper contains one new section, Bayesian versus optimal solutions, where we explain in detail the results supporting our claim that bayesian learning may not be optimal. Figures 4 of the first submission was difficult to understand. We replaced it by two new figures (Figs. 4 and 5 in this new version) containing more detail

    Pre-Symmetry Sets of 3D shapes

    Full text link
    The investigation of 3D euclidean symmetry sets (SS) and medial axis is an important area, due in particular to their various important applications. The pre-symmetry set of a surface M in 3-space (resp. smooth closed curve in 2D) is the set of pairs of points which contribute to the symmetry set, that is, the closure of the set of pairs of distinct points p and q in M, for which there exists a sphere (resp. a circle) tangent to M at p and at q. The aim of this paper is to address problems related to the smoothness and the singularities of the pre-symmetry sets of 3D shapes. We show that the pre-symmetry set of a smooth surface in 3-space has locally the structure of the graph of a function from R^2 to R^2, in many cases of interest.Comment: ACM-class: I.2; I.5; I.4; J.2. Latex, 3 grouped figures. The final version will appear in the proceedings of the First International Workshop on Deep Structure, Singularities and Computer Vision, Maastricht June 200

    X-ray Linear Dichroism in cubic compounds: the case of Cr3+ in MgAl2O4

    Full text link
    The angular dependence (x-ray linear dichroism) of the Cr K pre-edge in MgAl2O4:Cr3+ spinel is measured by means of x-ray absorption near edge structure spectroscopy (XANES) and compared to calculations based on density functional theory (DFT) and ligand field multiplet theory (LFM). We also present an efficient method, based on symmetry considerations, to compute the dichroism of the cubic crystal starting from the dichroism of a single substitutional site. DFT shows that the electric dipole transitions do not contribute to the features visible in the pre-edge and provides a clear vision of the assignment of the 1s-->3d transitions. However, DFT is unable to reproduce quantitatively the angular dependence of the pre-edge, which is, on the other side, well reproduced by LFM calculations. The most relevant factors determining the dichroism of Cr K pre-edge are identified as the site distortion and 3d-3d electronic repulsion. From this combined DFT, LFM approach is concluded that when the pre-edge features are more intense than 4 % of the edge jump, pure quadrupole transitions cannot explain alone the origin of the pre-edge. Finally, the shape of the dichroic signal is more sensitive than the isotropic spectrum to the trigonal distortion of the substitutional site. This suggests the possibility to obtain quantitative information on site distortion from the x-ray linear dichroism by performing angular dependent measurements on single crystals

    Process versus Unfolding Semantics for Place/Transition Petri Nets

    Get PDF
    In the last few years, the semantics of Petri nets has been investigated in several different ways. Apart from the classical "token game," one can model the behaviour of Petri nets via non-sequential processes, via unfolding constructions, which provide formal relationships between nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories whose models are monoidal categories. In this paper we show that these three points of view can be reconciled. In our formal development a relevant role is played by DecOcc, a category of occurrence nets appropriately decorated to take into account the history of tokens. The structure of decorated occurrence nets at the same time provides natural unfoldings for Place/Transition (PT) nets and suggests a new notion of processes, the decorated processes, which induce on Petri nets the same semantics as that of unfolding. In addition, we prove that the decorated processes of a net can be axiomatized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid unification

    On the Category of Petri Net Computations

    No full text
    We introduce the notion of strongly concatenable process as a refinement of concatenable processes [DMM89] which can be expressed axiomatically via a functor Q[]Q[-] from the category of Petri nets to an appropriate category of symmetric strict monoidal categories, in the precise sense that, for each net NN, the strongly concatenable processes of NN are isomorphic to the arrows of Q[]Q[-]. In addition, we identify a coreflection right adjoint to Q[]Q[-] and characterize its replete image, thus yielding an axiomatization of the category of net computations

    Experimental probes of emergent symmetries in the quantum Hall system

    Full text link
    Experiments studying renormalization group flows in the quantum Hall system provide significant evidence for the existence of an emergent holomorphic modular symmetry Γ0(2)\Gamma_0(2). We briefly review this evidence and show that, for the lowest temperatures, the experimental determination of the position of the quantum critical points agrees to the parts \emph{per mille} level with the prediction from Γ0(2)\Gamma_0(2). We present evidence that experiments giving results that deviate substantially from the symmetry predictions are not cold enough to be in the quantum critical domain. We show how the modular symmetry extended by a non-holomorphic particle-hole duality leads to an extensive web of dualities related to those in plateau-insulator transitions, and we derive a formula relating dual pairs (B,Bd)(B,B_d) of magnetic field strengths across any transition. The experimental data obtained for the transition studied so far is in excellent agreement with the duality relations following from this emergent symmetry, and rule out the duality rule derived from the ``law of corresponding states". Comparing these generalized duality predictions with future experiments on other transitions should provide stringent tests of modular duality deep in the non-linear domain far from the quantum critical points.Comment: 12 pages, 9 figure

    An Approach to the Category of Net Computations

    No full text
    We introduce the notion of strongly concatenable process as a refinement of concatenable processes [DMM89] which can be expressed axiomatically via a functor Q[]Q[-] from the category of Petri nets to an appropriate category of symmetric strict monoidal categories, in the precise sense that, for each net NN, the strongly concatenable processes of NN are isomorphic to the arrows of Q[N]Q[N]. In addition, we identify a coreflection right adjoint to Q[]Q[-] and characterize its replete image, thus yielding an axiomatization of the category of net computations
    corecore