5 research outputs found

    Transition Property For Cube-Free Words

    Full text link
    We study cube-free words over arbitrary non-unary finite alphabets and prove the following structural property: for every pair (u,v)(u,v) of dd-ary cube-free words, if uu can be infinitely extended to the right and vv can be infinitely extended to the left respecting the cube-freeness property, then there exists a "transition" word ww over the same alphabet such that uwvuwv is cube free. The crucial case is the case of the binary alphabet, analyzed in the central part of the paper. The obtained "transition property", together with the developed technique, allowed us to solve cube-free versions of three old open problems by Restivo and Salemi. Besides, it has some further implications for combinatorics on words; e.g., it implies the existence of infinite cube-free words of very big subword (factor) complexity.Comment: 14 pages, 5 figure

    Transition Property for Cube-Free Words

    Full text link
    We study cube-free words over arbitrary non-unary finite alphabets and prove the following structural property: for every pair (u, v) of d-ary cube-free words, if u can be infinitely extended to the right and v can be infinitely extended to the left respecting the cube-freeness property, then there exists a “transition” word w over the same alphabet such that uwv is cube free. The crucial case is the case of the binary alphabet, analyzed in the central part of the paper. The obtained “transition property”, together with the developed technique, allowed us to solve cube-free versions of three old open problems by Restivo and Salemi. Besides, it has some further implications for combinatorics on words; e.g., it implies the existence of infinite cube-free words of very big subword (factor) complexity. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.E.A. Petrova — Supported by the Russian Science Foundation, grant 18-71-00043

    Transition Property for α\alpha-Power Free Languages with α2\alpha\geq 2 and k3k\geq 3 Letters

    Full text link
    In 1985, Restivo and Salemi presented a list of five problems concerning power free languages. Problem 44 states: Given α\alpha-power-free words uu and vv, decide whether there is a transition from uu to vv. Problem 55 states: Given α\alpha-power-free words uu and vv, find a transition word ww, if it exists. Let Σk\Sigma_k denote an alphabet with kk letters. Let Lk,αL_{k,\alpha} denote the α\alpha-power free language over the alphabet Σk\Sigma_k, where α\alpha is a rational number or a rational "number with ++". If α\alpha is a "number with ++" then suppose k3k\geq 3 and α2\alpha\geq 2. If α\alpha is "only" a number then suppose k=3k=3 and α>2\alpha>2 or k>3k>3 and α2\alpha\geq 2. We show that: If uLk,αu\in L_{k,\alpha} is a right extendable word in Lk,αL_{k,\alpha} and vLk,αv\in L_{k,\alpha} is a left extendable word in Lk,αL_{k,\alpha} then there is a (transition) word ww such that uwvLk,αuwv\in L_{k,\alpha}. We also show a construction of the word ww

    Branching densities of cube-free and square-free words

    Full text link
    Binary cube-free language and ternary square-free language are two “canonical” represen-tatives of a wide class of languages defined by avoidance properties. Each of these two languages can be viewed as an infinite binary tree reflecting the prefix order of its elements. We study how “homogenious” these trees are, analysing the following parameter: the density of branching nodes along infinite paths. We present combinatorial results and an efficient search algorithm, which together allowed us to get the following numerical results for the cube-free language: the minimal density of branching points is between 3509/9120 ≈ 0.38476 and 13/29 ≈ 0.44828, and the maximal density is between 0.72 and 67/93 ≈ 0.72043. We also prove the lower bound 223/868 ≈ 0.25691 on the density of branching points in the tree of the ternary square-free language. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.This research was funded by Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2020-1537/1)
    corecore