556,531 research outputs found

    A Dictionary Approach to Identifying Transient RFI

    Full text link
    As radio telescopes become more sensitive, the damaging effects of radio frequency interference (RFI) become more apparent. Near radio telescope arrays, RFI sources are often easily removed or replaced; the challenge lies in identifying them. Transient (impulsive) RFI is particularly difficult to identify. We propose a novel dictionary-based approach to transient RFI identification. RFI events are treated as sequences of sub-events, drawn from particular labelled classes. We demonstrate an automated method of extracting and labelling sub-events using a dataset of transient RFI. A dictionary of labels may be used in conjunction with hidden Markov models to identify the sources of RFI events reliably. We attain improved classification accuracy over traditional approaches such as SVMs or a na\"ive kNN classifier. Finally, we investigate why transient RFI is difficult to classify. We show that cluster separation in the principal components domain is influenced by the mains supply phase for certain sources

    Cause Identification of Electromagnetic Transient Events using Spatiotemporal Feature Learning

    Full text link
    This paper presents a spatiotemporal unsupervised feature learning method for cause identification of electromagnetic transient events (EMTE) in power grids. The proposed method is formulated based on the availability of time-synchronized high-frequency measurement, and using the convolutional neural network (CNN) as the spatiotemporal feature representation along with softmax function. Despite the existing threshold-based, or energy-based events analysis methods, such as support vector machine (SVM), autoencoder, and tapered multi-layer perception (t-MLP) neural network, the proposed feature learning is carried out with respect to both time and space. The effectiveness of the proposed feature learning and the subsequent cause identification is validated through the EMTP simulation of different events such as line energization, capacitor bank energization, lightning, fault, and high-impedance fault in the IEEE 30-bus, and the real-time digital simulation (RTDS) of the WSCC 9-bus system.Comment: 9 pages, 7 figure

    Cage-jump motion reveals universal dynamics and non-universal structural features in glass forming liquids

    Get PDF
    The sluggish and heterogeneous dynamics of glass forming liquids is frequently associated to the transient coexistence of two phases of particles, respectively with an high and low mobility. In the absence of a dynamical order parameter that acquires a transient bimodal shape, these phases are commonly identified empirically, which makes difficult investigating their relation with the structural properties of the system. Here we show that the distribution of single particle diffusivities can be accessed within a Continuous Time Random Walk description of the intermittent motion, and that this distribution acquires a transient bimodal shape in the deeply supercooled regime, thus allowing for a clear identification of the two coexisting phase. In a simple two-dimensional glass forming model, the dynamic phase coexistence is accompanied by a striking structural counterpart: the distribution of the crystalline-like order parameter becomes also bimodal on cooling, with increasing overlap between ordered and immobile particles. This simple structural signature is absent in other models, such as the three-dimesional Kob-Andersen Lennard-Jones mixture, where more sophisticated order parameters might be relevant. In this perspective, the identification of the two dynamical coexisting phases opens the way to deeper investigations of structure-dynamics correlations.Comment: Published in the J. Stat. Mech. Special Issue "The Role of Structure in Glassy and Jammed Systems

    Chandra localization of XTE J1906+090 and discovery of its optical and infrared counterparts

    Get PDF
    We present the Chandra identification and localization of the transient X-ray source XTE J1906+090 and the discovery of its optical and infrared counterparts. Our analysis of archival Chandra ACIS-I observations of the field found the source approximately 8 away from the position determined earlier with the RXTE PCA. We have confirmed the source identification with timing analysis of the X-ray data, which detected the source spin period of 89.6 s. The best Chandra position for the source is R.A. = 19h04m47491, decl. = +09024140. Subsequently, we performed optical observations of the field around the new location and discovered a coincident optical source with R-band magnitude of 18.7. A search in the Two Micron All Sky Survey catalog revealed an infrared point source with J = 15.2, H = 14.2, and K = 13.5, whose location is also coincident with our Chandra and optical positions. Our results add fresh evidence for a Be/X-ray transient nature for XTE J1906+090

    Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations (identification of lifting rotor system parameters from transient response data), Phase 7-B

    Get PDF
    System identification methods have been applied to rotorcraft to estimate stability derivatives from transient flight control response data. While these applications assumed a linear constant coefficient representation of the rotorcraft, the computer experiments used transient responses in flap-bending and torsion of a rotor blade at high advance ratio which is a rapidly time varying periodic system. It was found that a simple system identification method applying a linear sequential estimator also called least square estimator or equation of motion estimator, is suitable for this periodic system and can be used directly if only the acceleration data are noise polluted. In the case of noise being present also in the state variable data the direct application of the estimator gave poor results

    Identification of nonlinear vibrating structures: Part I -- Formulation

    Get PDF
    A self-starting multistage, time-domain procedure is presented for the identification of nonlinear, multi-degree-of-freedom systems undergoing free oscillations or subjected to arbitrary direct force excitations and/or nonuniform support motions. Recursive least-squares parameter estimation methods combined with nonparametric identification techniques are used to represent, with sufficient accuracy, the identified system in a form that allows the convenient prediction of its transient response under excitations that differ from the test signals. The utility of this procedure is demonstrated in a companion paper

    Experiments in sensing transient rotational acceleration cues on a flight simulator

    Get PDF
    Results are presented for two transient motion sensing experiments which were motivated by the identification of an anomalous roll cue (a 'jerk' attributed to an acceleration spike) in a prior investigation of realistic fighter motion simulation. The experimental results suggest the consideration of several issues for motion washout and challenge current sensory system modeling efforts. Although no sensory modeling effort is made it is argued that such models must incorporate the ability to handle transient inputs of short duration (some of which are less than the accepted latency times for sensing), and must represent separate channels for rotational acceleration and velocity sensing
    corecore