160 research outputs found

    Inclusive Flavour Tagging Algorithm

    Full text link
    Identifying the flavour of neutral BB mesons production is one of the most important components needed in the study of time-dependent CPCP violation. The harsh environment of the Large Hadron Collider makes it particularly hard to succeed in this task. We present an inclusive flavour-tagging algorithm as an upgrade of the algorithms currently used by the LHCb experiment. Specifically, a probabilistic model which efficiently combines information from reconstructed vertices and tracks using machine learning is proposed. The algorithm does not use information about underlying physics process. It reduces the dependence on the performance of lower level identification capacities and thus increases the overall performance. The proposed inclusive flavour-tagging algorithm is applicable to tag the flavour of BB mesons in any proton-proton experiment.Comment: 5 pages, 5 figures, 17th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT-2016

    Calculating classifier calibration performance with a custom modification of Weka

    Get PDF
    Calibration is often overlooked in machine-learning problem-solving approaches, even in situations where an accurate estimation of predicted probabilities, and not only a discrimination between classes, is critical for decision-making. One of the reasons is the lack of readily available open-source software packages which can easily calculate calibration metrics. In order to provide one such tool, we have developed a custom modification of the Weka data mining software, which implements the calculation of Hosmer-Lemeshow groups of risk and the Pearson chi-square statistic comparison between estimated and observed frequencies for binary problems. We provide calibration performance estimations with Logistic regression (LR), BayesNet, Naïve Bayes, artificial neural network (ANN), support vector machine (SVM), knearest neighbors (KNN), decision trees and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) models with six different datasets. Our experiments show that SVMs with RBF kernels exhibit the best results in terms of calibration, while decision trees, RIPPER and KNN are highly unlikely to produce well-calibrated models

    Field-aware Calibration: A Simple and Empirically Strong Method for Reliable Probabilistic Predictions

    Full text link
    It is often observed that the probabilistic predictions given by a machine learning model can disagree with averaged actual outcomes on specific subsets of data, which is also known as the issue of miscalibration. It is responsible for the unreliability of practical machine learning systems. For example, in online advertising, an ad can receive a click-through rate prediction of 0.1 over some population of users where its actual click rate is 0.15. In such cases, the probabilistic predictions have to be fixed before the system can be deployed. In this paper, we first introduce a new evaluation metric named field-level calibration error that measures the bias in predictions over the sensitive input field that the decision-maker concerns. We show that existing post-hoc calibration methods have limited improvements in the new field-level metric and other non-calibration metrics such as the AUC score. To this end, we propose Neural Calibration, a simple yet powerful post-hoc calibration method that learns to calibrate by making full use of the field-aware information over the validation set. We present extensive experiments on five large-scale datasets. The results showed that Neural Calibration significantly improves against uncalibrated predictions in common metrics such as the negative log-likelihood, Brier score and AUC, as well as the proposed field-level calibration error.Comment: WWW 202
    corecore