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Abstract 

Calibration is often overlooked in machine-learning problem-solving approaches, even in situations where an accurate 
estimation of predicted probabilities, and not only a discrimination between classes, is critical for decision-making. One 
of the reasons is the lack of readily available open-source software packages which can easily calculate calibration 
metrics. In order to provide one such tool, we have developed a custom modification of the Weka data mining software, 
which implements the calculation of Hosmer-Lemeshow groups of risk and the Pearson chi-square statistic comparison 
between estimated and observed frequencies for binary problems. We provide calibration performance estimations with 
Logistic regression (LR), BayesNet, Naïve Bayes, artificial neural network (ANN), support vector machine (SVM), k-
nearest neighbors (KNN), decision trees and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) 
models with six different datasets. Our experiments show that SVMs with RBF kernels exhibit the best results in terms of 
calibration, while decision trees, RIPPER and KNN are highly unlikely to produce well-calibrated models. 

INTRODUCTION 

Machine-learning and data mining model performance is usually evaluated through discrimination metrics (area 
under ROC, accuracy, specificity, sensitivity), but the accurate estimation of predicted probabilities, also known as 
calibration, is rarely taken into account. However, for most binary decision-making problems calibration is critical. 
We may cite credit default risk or risk of cancer recidivism as examples. If an algorithm was developed to assess the 
risk of the aforementioned outcomes, given a set of input variables, we would prefer that a prediction of 51% did not 
have the same meaning as one of 97%, although if the cut-off point was set at 50% we would classify both cases as 
positive.  

 
Initially, one may think that an algorithm with an excellent discrimination is also guaranteed to have good 

calibration. An obvious counter-example is a binary classifier which produces only two possible outcomes. Indeed, 
with monotonic transformations of the predicted probability, the area under ROC (AUC) remains the same. On the 
other hand, an algorithm with good calibration has been proved (1) to have good discrimination. 

 
Ideally, calibration should compare predicted probabilities with real underlying probabilities. As the latter are 

usually unknown, the most common approach to assess calibration is to compare observed and expected outcomes 
by groups. We have chosen the Hosmer-Lemeshow groups of risk approach (2) for calibration assessment. Although 
commonly used in statistical software, it has been rarely introduced in data mining solutions. The Weka software (3) 
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is open-source, feature rich and has a very large user base. This made it an ideal candidate for the introduction of 
this classical calibration metric. In order to asses its adequacy and validity, we tested this approach with several 
well-known classifiers and datasets. 

MATERIAL AND METHODS 

Hosmer-Lemeshow Test 

The Hosmer-Lemeshow test for binary problems is commonly used for assessing the calibration of logistic 
regression models (4). It can be applied to any model which produces predicted probabilities. A table of observed 
and expected frequencies is calculated separating them by g groups. Then, the C statistic is defined: 
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ko1  observed frequencies in group k when the outcome variable is 1 

ke1  expected frequencies in group k when the outcome variable is 1 

ko0 observed frequencies in group k when the outcome variable is 0 

ke0  expected frequencies in group k when the outcome variable is 0 

 
Usually C is well approximated by a chi-square distribution with g – 2 degrees of freedom χ 2 (g – 2). Hence, a 

p-value may be defined as follows: 
 

                                                                    p-value = 1 – P(χ 2 < C)                                                                    (2) 
 
In this case, a p-value of less then 0.05 indicates a poor fit, while large values indicate a good fit, which happens 

when the observed and expected frequencies distributions are similar. 
 
Groups may be calculated as (a) percentiles of estimated probabilities and as (b) fixed values of the estimated 

probabilities (0.1, 0.2, etc). The first approach is preferred as the resulting distributions exhibit higher similarities to 
the chi-square distribution with g-2 degrees of freedom. The second approach is also more likely to yield null 
expected frequencies, and is therefore more prone to produce non-computable results.  

Implementation Details 

The calculation of Chi-square value and the corresponding p-value was introduced as a modification of the latest 
development version of Weka, which, at the time of the writing is 3.7.11. A sample execution with calibration 
metrics of the Weka Explorer module can be seen in Figure 1. In order to enable automated algorithm evaluation, 
these new metrics were also introduced in the Weka Experimenter module, which allows batch execution. 

 
One of the weaknesses of the Hosmer-Lemeshow groups of risk approach is that, in poorly calibrated classifiers, 

it may not be possible to perform the division in the required number of groups, making further computations 
impossible. We have used the Percentile class implemented in the Apache Commons Mathematics Library, which 
follows the approach recommended by the US National Institute of Standards and Technology (5). It must be noted 
however, that there is no gold standard for the division in percentiles. Different software packages (such as SPSS, 
Stata, SAS, SciPy, Octave or R) implement diverse methods of estimation. Some of them let the operator choose one 
or another. Therefore, percentile group cut points may vary compared to the output generated by our modification of 
Weka, especially with small datasets and models with inadequate calibration.  

 



Even if the number of groups is sufficient, the sum of estimated probabilities for a given group may be zero or 
close to zero. In order to slightly mitigate this problem, we set the number of groups at 5, as a lower number of 
groups was likely to produce more computable cases. 
 

 

 
 

FIGURE 1. Hosmer-Lemeshow groups of risk Weka implementation 

Classifiers and Datasets 

SVMs with RBF and polynomic kernels, ANNs, C4.5 decision trees, KNNs, RIPPER, BayesNet and Naïve 
bayes classifiers were used on six canonical datasets (6-11). Dataset characteristics are presented in Table 1. We 
decided to include a mix of datasets with a variety of instances per independent variable. 

 
One hundred experiments were performed with each algorithm and dataset using random-order train-test 

partitions of 66% (i.e. test datasets included 34% of the data). Classifiers were used as-is in all cases, with no 
parameter optimization. SVMs were adjusted to produce a logistic model with a probabilistic output. 

 
 
 
 

 
 



TABLE 1. Datasets used in our experiments. 

Dataset Train set size (66% of total 

instances) 

Number of independent 

variables 

German Credit data (6) 660 20 
Final settlements in labor 
negotiations in Canadian 
industry database (7) 

37 16 

Ionosphere database (8) 231 34 
Pima Indians diabetes database 
(9) 

507 8 

Breast cancer data (10) 188 9 
United States Congressional 
Voting Records Database (11) 

287 16 

Comparison Methodology 

Test set Chi-square values were compared between classifiers. Both high and incomputable values of this metric 
imply bad calibration, while adequate calibration is defined by a low Chi-square. Hence, the value was dichotomized 
at a cutoff point of 9.4877, which is approximately equivalent to a cumulative probability of 95% in a Chi-square 
distribution with 3 degrees of freedom. By this definition, RIPPER, C4.5 and KNN had less than 3 well-calibrated 
experiments each, which can be attributed to chance in the train-test partition rather than meaningful results. These 
classifiers were excluded from further comparisons. A GEE regression, using the dataset as a panel variable, was 
applied to the remaining algorithms in order to estimate their respective performance. The Naïve Bayes classifier 
was taken as a reference. 
 

Average precision and average AUC were also added to the comparison in order to provide some context of the 
usual measures. 

RESULTS 

A comparison of classifier calibration performance against Naïve Bayes is presented in Table 2. There is no 
statistically significant difference between it and the ANN classifier in terms of calibration. SVMs with RBF 
(logistic) kernel exhibit the best results.  
 

TABLE 2. Classifier performance 

   Calibration 

Classifier 

Average  

% 

Correctly 

classified 

Average  

AUC 

% of 

adequately 

calibrated 

experiments 

GEE 

regression  

coefficient 

 

GEE regression  

coefficient 95% CI 

Zero Rule (trivial classifier) 70,6212 0,5000 0.00%   
Naïve Bayes 82,4858 0,8225 10.83% Reference coefficient 
ANN 83,6574 0,8075 10.83% 

 
3.15e-15 (-0.04363, 0.04363) 

BayesNet 84,0873 0,8106 15.50% .0466667 (0.00303, 0.09029) 
Logistic regression 84,1554 0,8162 24.00% 

 
.1316667 (0.08803, 0.17529) 

SVM, polynomic kernel 84,0897 0,8198 37.50% 
 

.2666667 (0.22303, 0.31029) 

SVM, RBF kernel 84,2666 0,8309 60.50% .4966667 (0.45303, 0.54029) 



 
In the case of ANN, most likely, better results could have been achieved with larger training datasets and 

parameter optimization.  
 
This example shows that models with an acceptable AUC may not be adequately calibrated, which highlights its 

importance. 

CONCLUSIONS 

We have successfully developed a new functionality in the Weka data mining software and proved that it can be 
used as an additional metric of classifier performance. 

 
In our tests well-calibrated models were rarely achieved with some classifiers. This is hardly surprising as some 

of the datasets were challenging and most classifiers used in machine-learning emphasize discrimination over 
calibration by design. 

FUTURE WORK 

For the sake of simplicity we have tested calibration measures in binary problems, which are common in many 
domains. Although the Hosmer-Lemeshow groups of risk approach may be generalized to multinomial problems, 
additional adjustments are usually required for adequate interpretation in these cases. Alternative approaches, some 
of them developed specifically for data mining problems may be preferable (12-14). 
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