3,220 research outputs found

    Enumerating five families of pattern-avoiding inversion sequences; and introducing the powered Catalan numbers

    Full text link
    The first problem addressed by this article is the enumeration of some families of pattern-avoiding inversion sequences. We solve some enumerative conjectures left open by the foundational work on the topics by Corteel et al., some of these being also solved independently by Lin, and Kim and Lin. The strength of our approach is its robustness: we enumerate four families F1⊂F2⊂F3⊂F4F_1 \subset F_2 \subset F_3 \subset F_4 of pattern-avoiding inversion sequences ordered by inclusion using the same approach. More precisely, we provide a generating tree (with associated succession rule) for each family FiF_i which generalizes the one for the family Fi−1F_{i-1}. The second topic of the paper is the enumeration of a fifth family F5F_5 of pattern-avoiding inversion sequences (containing F4F_4). This enumeration is also solved \emph{via} a succession rule, which however does not generalize the one for F4F_4. The associated enumeration sequence, which we call the \emph{powered Catalan numbers}, is quite intriguing, and further investigated. We provide two different succession rules for it, denoted ΩpCat\Omega_{pCat} and Ωsteady\Omega_{steady}, and show that they define two types of families enumerated by powered Catalan numbers. Among such families, we introduce the \emph{steady paths}, which are naturally associated with Ωsteady\Omega_{steady}. They allow us to bridge the gap between the two types of families enumerated by powered Catalan numbers: indeed, we provide a size-preserving bijection between steady paths and valley-marked Dyck paths (which are naturally associated with ΩpCat\Omega_{pCat}). Along the way, we provide several nice connections to families of permutations defined by the avoidance of vincular patterns, and some enumerative conjectures.Comment: V2 includes modifications suggested by referees (in particular, a much shorter Section 3, to account for arXiv:1706.07213

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Code Generation = A* + BURS

    Get PDF
    A system called BURS that is based on term rewrite systems and a search algorithm A* are combined to produce a code generator that generates optimal code. The theory underlying BURS is re-developed, formalised and explained in this work. The search algorithm uses a cost heuristic that is derived from the termrewrite system to direct the search. The advantage of using a search algorithm is that we need to compute only those costs that may be part of an optimal rewrite sequence

    Enumeration of m-ary cacti

    Get PDF
    The purpose of this paper is to enumerate various classes of cyclically colored m-gonal plane cacti, called m-ary cacti. This combinatorial problem is motivated by the topological classification of complex polynomials having at most m critical values, studied by Zvonkin and others. We obtain explicit formulae for both labelled and unlabelled m-ary cacti, according to i) the number of polygons, ii) the vertex-color distribution, iii) the vertex-degree distribution of each color. We also enumerate m-ary cacti according to the order of their automorphism group. Using a generalization of Otter's formula, we express the species of m-ary cacti in terms of rooted and of pointed cacti. A variant of the m-dimensional Lagrange inversion is then used to enumerate these structures. The method of Liskovets for the enumeration of unrooted planar maps can also be adapted to m-ary cacti.Comment: LaTeX2e, 28 pages, 9 figures (eps), 3 table
    • 

    corecore