6,135 research outputs found

    Grounding Language for Transfer in Deep Reinforcement Learning

    Full text link
    In this paper, we explore the utilization of natural language to drive transfer for reinforcement learning (RL). Despite the wide-spread application of deep RL techniques, learning generalized policy representations that work across domains remains a challenging problem. We demonstrate that textual descriptions of environments provide a compact intermediate channel to facilitate effective policy transfer. Specifically, by learning to ground the meaning of text to the dynamics of the environment such as transitions and rewards, an autonomous agent can effectively bootstrap policy learning on a new domain given its description. We employ a model-based RL approach consisting of a differentiable planning module, a model-free component and a factorized state representation to effectively use entity descriptions. Our model outperforms prior work on both transfer and multi-task scenarios in a variety of different environments. For instance, we achieve up to 14% and 11.5% absolute improvement over previously existing models in terms of average and initial rewards, respectively.Comment: JAIR 201

    Sim-to-Real Transfer of Robotic Control with Dynamics Randomization

    Full text link
    Simulations are attractive environments for training agents as they provide an abundant source of data and alleviate certain safety concerns during the training process. But the behaviours developed by agents in simulation are often specific to the characteristics of the simulator. Due to modeling error, strategies that are successful in simulation may not transfer to their real world counterparts. In this paper, we demonstrate a simple method to bridge this "reality gap". By randomizing the dynamics of the simulator during training, we are able to develop policies that are capable of adapting to very different dynamics, including ones that differ significantly from the dynamics on which the policies were trained. This adaptivity enables the policies to generalize to the dynamics of the real world without any training on the physical system. Our approach is demonstrated on an object pushing task using a robotic arm. Despite being trained exclusively in simulation, our policies are able to maintain a similar level of performance when deployed on a real robot, reliably moving an object to a desired location from random initial configurations. We explore the impact of various design decisions and show that the resulting policies are robust to significant calibration error

    Multiscale Markov Decision Problems: Compression, Solution, and Transfer Learning

    Full text link
    Many problems in sequential decision making and stochastic control often have natural multiscale structure: sub-tasks are assembled together to accomplish complex goals. Systematically inferring and leveraging hierarchical structure, particularly beyond a single level of abstraction, has remained a longstanding challenge. We describe a fast multiscale procedure for repeatedly compressing, or homogenizing, Markov decision processes (MDPs), wherein a hierarchy of sub-problems at different scales is automatically determined. Coarsened MDPs are themselves independent, deterministic MDPs, and may be solved using existing algorithms. The multiscale representation delivered by this procedure decouples sub-tasks from each other and can lead to substantial improvements in convergence rates both locally within sub-problems and globally across sub-problems, yielding significant computational savings. A second fundamental aspect of this work is that these multiscale decompositions yield new transfer opportunities across different problems, where solutions of sub-tasks at different levels of the hierarchy may be amenable to transfer to new problems. Localized transfer of policies and potential operators at arbitrary scales is emphasized. Finally, we demonstrate compression and transfer in a collection of illustrative domains, including examples involving discrete and continuous statespaces.Comment: 86 pages, 15 figure

    Learning Representations in Model-Free Hierarchical Reinforcement Learning

    Full text link
    Common approaches to Reinforcement Learning (RL) are seriously challenged by large-scale applications involving huge state spaces and sparse delayed reward feedback. Hierarchical Reinforcement Learning (HRL) methods attempt to address this scalability issue by learning action selection policies at multiple levels of temporal abstraction. Abstraction can be had by identifying a relatively small set of states that are likely to be useful as subgoals, in concert with the learning of corresponding skill policies to achieve those subgoals. Many approaches to subgoal discovery in HRL depend on the analysis of a model of the environment, but the need to learn such a model introduces its own problems of scale. Once subgoals are identified, skills may be learned through intrinsic motivation, introducing an internal reward signal marking subgoal attainment. In this paper, we present a novel model-free method for subgoal discovery using incremental unsupervised learning over a small memory of the most recent experiences (trajectories) of the agent. When combined with an intrinsic motivation learning mechanism, this method learns both subgoals and skills, based on experiences in the environment. Thus, we offer an original approach to HRL that does not require the acquisition of a model of the environment, suitable for large-scale applications. We demonstrate the efficiency of our method on two RL problems with sparse delayed feedback: a variant of the rooms environment and the first screen of the ATARI 2600 Montezuma's Revenge game

    Sequential Transfer in Multi-armed Bandit with Finite Set of Models

    Get PDF
    Learning from prior tasks and transferring that experience to improve future performance is critical for building lifelong learning agents. Although results in supervised and reinforcement learning show that transfer may significantly improve the learning performance, most of the literature on transfer is focused on batch learning tasks. In this paper we study the problem of \textit{sequential transfer in online learning}, notably in the multi-armed bandit framework, where the objective is to minimize the cumulative regret over a sequence of tasks by incrementally transferring knowledge from prior tasks. We introduce a novel bandit algorithm based on a method-of-moments approach for the estimation of the possible tasks and derive regret bounds for it
    corecore