120 research outputs found

    Mining Cross-Person Cues for Body-Part Interactiveness Learning in HOI Detection

    Full text link
    Human-Object Interaction (HOI) detection plays a crucial role in activity understanding. Though significant progress has been made, interactiveness learning remains a challenging problem in HOI detection: existing methods usually generate redundant negative H-O pair proposals and fail to effectively extract interactive pairs. Though interactiveness has been studied in both whole body- and part- level and facilitates the H-O pairing, previous works only focus on the target person once (i.e., in a local perspective) and overlook the information of the other persons. In this paper, we argue that comparing body-parts of multi-person simultaneously can afford us more useful and supplementary interactiveness cues. That said, to learn body-part interactiveness from a global perspective: when classifying a target person's body-part interactiveness, visual cues are explored not only from herself/himself but also from other persons in the image. We construct body-part saliency maps based on self-attention to mine cross-person informative cues and learn the holistic relationships between all the body-parts. We evaluate the proposed method on widely-used benchmarks HICO-DET and V-COCO. With our new perspective, the holistic global-local body-part interactiveness learning achieves significant improvements over state-of-the-art. Our code is available at https://github.com/enlighten0707/Body-Part-Map-for-Interactiveness.Comment: To appear in ECCV 202

    Detecting Human-Object Interactions via Functional Generalization

    Full text link
    We present an approach for detecting human-object interactions (HOIs) in images, based on the idea that humans interact with functionally similar objects in a similar manner. The proposed model is simple and efficiently uses the data, visual features of the human, relative spatial orientation of the human and the object, and the knowledge that functionally similar objects take part in similar interactions with humans. We provide extensive experimental validation for our approach and demonstrate state-of-the-art results for HOI detection. On the HICO-Det dataset our method achieves a gain of over 2.5% absolute points in mean average precision (mAP) over state-of-the-art. We also show that our approach leads to significant performance gains for zero-shot HOI detection in the seen object setting. We further demonstrate that using a generic object detector, our model can generalize to interactions involving previously unseen objects.Comment: AAAI 202

    Human-Object Interaction Detection:A Quick Survey and Examination of Methods

    Full text link
    Human-object interaction detection is a relatively new task in the world of computer vision and visual semantic information extraction. With the goal of machines identifying interactions that humans perform on objects, there are many real-world use cases for the research in this field. To our knowledge, this is the first general survey of the state-of-the-art and milestone works in this field. We provide a basic survey of the developments in the field of human-object interaction detection. Many works in this field use multi-stream convolutional neural network architectures, which combine features from multiple sources in the input image. Most commonly these are the humans and objects in question, as well as the spatial quality of the two. As far as we are aware, there have not been in-depth studies performed that look into the performance of each component individually. In order to provide insight to future researchers, we perform an individualized study that examines the performance of each component of a multi-stream convolutional neural network architecture for human-object interaction detection. Specifically, we examine the HORCNN architecture as it is a foundational work in the field. In addition, we provide an in-depth look at the HICO-DET dataset, a popular benchmark in the field of human-object interaction detection. Code and papers can be found at https://github.com/SHI-Labs/Human-Object-Interaction-Detection.Comment: Published at The 1st International Workshop On Human-Centric Multimedia Analysis, at ACM Multimedia Conference 202

    DecAug: Augmenting HOI Detection via Decomposition

    Full text link
    Human-object interaction (HOI) detection requires a large amount of annotated data. Current algorithms suffer from insufficient training samples and category imbalance within datasets. To increase data efficiency, in this paper, we propose an efficient and effective data augmentation method called DecAug for HOI detection. Based on our proposed object state similarity metric, object patterns across different HOIs are shared to augment local object appearance features without changing their state. Further, we shift spatial correlation between humans and objects to other feasible configurations with the aid of a pose-guided Gaussian Mixture Model while preserving their interactions. Experiments show that our method brings up to 3.3 mAP and 1.6 mAP improvements on V-COCO and HICODET dataset for two advanced models. Specifically, interactions with fewer samples enjoy more notable improvement. Our method can be easily integrated into various HOI detection models with negligible extra computational consumption. Our code will be made publicly available
    • …
    corecore