2,606 research outputs found

    Exact enumeration of Hamiltonian circuits, walks, and chains in two and three dimensions

    Get PDF
    We present an algorithm for enumerating exactly the number of Hamiltonian chains on regular lattices in low dimensions. By definition, these are sets of k disjoint paths whose union visits each lattice vertex exactly once. The well-known Hamiltonian circuits and walks appear as the special cases k=0 and k=1 respectively. In two dimensions, we enumerate chains on L x L square lattices up to L=12, walks up to L=17, and circuits up to L=20. Some results for three dimensions are also given. Using our data we extract several quantities of physical interest

    2-Dimensional Polymers Confined in a Strip

    Full text link
    Single two dimensional polymers confined to a strip are studied by Monte Carlo simulations. They are described by N-step self-avoiding random walks on a square lattice between two parallel hard walls with distance 1 << D << N^\nu (\nu = 3/4 is the Flory exponent). For the simulations we employ the pruned-enriched-Rosenbluth method (PERM) with Markovian anticipation. We measure the densities of monomers and of end points as functions of the distance from the walls, the longitudinal extent of the chain, and the forces exerted on the walls. Their scaling with D and the universal ratio between force and monomer density at the wall are compared to theoretical predictions.Comment: 5 pages RevTex, 7 figures include

    Secondary Structures in Long Compact Polymers

    Full text link
    Compact polymers are self-avoiding random walks which visit every site on a lattice. This polymer model is used widely for studying statistical problems inspired by protein folding. One difficulty with using compact polymers to perform numerical calculations is generating a sufficiently large number of randomly sampled configurations. We present a Monte-Carlo algorithm which uniformly samples compact polymer configurations in an efficient manner allowing investigations of chains much longer than previously studied. Chain configurations generated by the algorithm are used to compute statistics of secondary structures in compact polymers. We determine the fraction of monomers participating in secondary structures, and show that it is self averaging in the long chain limit and strictly less than one. Comparison with results for lattice models of open polymer chains shows that compact chains are significantly more likely to form secondary structure.Comment: 14 pages, 14 figure

    Crossover phenomena involving the dense O(nn) phase

    Full text link
    We explore the properties of the low-temperature phase of the O(nn) loop model in two dimensions by means of transfer-matrix calculations and finite-size scaling. We determine the stability of this phase with respect to several kinds of perturbations, including cubic anisotropy, attraction between loop segments, double bonds and crossing bonds. In line with Coulomb gas predictions, cubic anisotropy and crossing bonds are found to be relevant and introduce crossover to different types of behavior. Whereas perturbations in the form of loop-loop attractions and double bonds are irrelevant, sufficiently strong perturbations of these types induce a phase transition of the Ising type, at least in the cases investigated. This Ising transition leaves the underlying universal low-temperature O(nn) behavior unaffected.Comment: 12 pages, 8 figure
    • …
    corecore