8 research outputs found

    Free annotated data for deep learning in microscopy? A hitchhiker's guide

    Full text link
    In microscopy, the time burden and cost of acquiring and annotating large datasets that many deep learning models take as a prerequisite, often appears to make these methods impractical. Can this requirement for annotated data be relaxed? Is it possible to borrow the knowledge gathered from datasets in other application fields and leverage it for microscopy? Here, we aim to provide an overview of methods that have recently emerged to successfully train learning-based methods in bio-microscopy.Comment: Accepted in Photoniques 10

    Penggunaan Pre-trained Model untuk Klasifikasi Kualitas Sekrup

    Get PDF
    Inspeksi kualitas produk berbasis citra merupakan hal yang penting bagi industri manufaktur. Tugas tersebut sebagian besar masih dilakukan oleh manusia yang memiliki unit per hour rendah. Metode konvensional untuk inspeksi citra masih mengandalkan metode berbasis fitur, yang memiliki masalah sulitnya generalisasi dan ekstraksi fitur. Masalah tersebut diatasi dengan metode CNN, tetapi CNN membutuhkan data yang besar dan waktu training yang lama. Penggunaan pre-trained model dan augmentasi citra dapat menyelesaikan permasalahan pada metode-metode sebelumnya. Namun, belum ada penelitian yang secara lengkap meneliti dan membandingkan performa berbagai pre-trained model dan variasi augmentasi citra untuk tugas inspeksi citra kualitas produk manufaktur.Proses penelitian menggunakan dataset sekrup berjenis multi class dan binary class pada 33 jenis pre-trained model dan 8 jenis augmentasi citra. Pengujian pre-trained model menggunakan dataset gabungan seluruh jenis augmentasi citra. Model dengan akurasi tertinggi adalah EfficientNetV2-L untuk dataset multi class (97.8%) dan VGG-19 untuk dataset binary class (96.5%). Augmentasi citra dengan signifikansi tertinggi terhadap performa model adalah blur, dengan akurasi 81.1% pada multi class dan 92% pada binary class. Keseluruhan proses pengujian pre-trained model dan augmentasi citra berjalan dengan baik.ย Kata kunciโ€”Inspeksi kualitas produk, Pre-trained model, Augmentasi citr

    ๋ถˆ์ถฉ๋ถ„ํ•œ ๊ณ ์žฅ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํšŒ์ „ ๊ธฐ๊ณ„ ์ง„๋‹จ๊ธฐ์ˆ  ํ•™์Šต๋ฐฉ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์œค๋ณ‘๋™.Deep Learning is a promising approach for fault diagnosis in mechanical applications. Deep learning techniques are capable of processing lots of data in once, and modelling them into desired diagnostic model. In industrial fields, however, we can acquire tons of data but barely useful including fault or failure data because failure in industrial fields is usually unacceptable. To cope with this insufficient fault data problem to train diagnostic model for rotating machinery, this thesis proposes three research thrusts: 1) filter-envelope blocks in convolution neural networks (CNNs) to incorporate the preprocessing steps for vibration signal; frequency filtering and envelope extraction for more optimal solution and reduced efforts in building diagnostic model, 2) cepstrum editing based data augmentation (CEDA) for diagnostic dataset consist of vibration signals from rotating machinery, and 3) selective parameter freezing (SPF) for efficient parameter transfer in transfer learning. The first research thrust proposes noble types of functional blocks for neural networks in order to learn robust feature to the vibration data. Conventional neural networks including convolution neural network (CNN), is tend to learn biased features when the training data is acquired from small cases of conditions. This can leads to unfavorable performance to the different conditions or other similar equipment. Therefore this research propose two neural network blocks which can be incorporated to the conventional neural networks and minimize the preprocessing steps, filter block and envelope block. Each block is designed to learn frequency filter and envelope extraction function respectively, in order to induce the neural network to learn more robust and generalized features from limited vibration samples. The second thrust presents a new data augmentation technique specialized for diagnostic data of vibration signals. Many data augmentation techniques exist for image data with no consideration for properties of vibration data. Conventional techniques for data augmentation, such as flipping, rotating, or shearing are not proper for 1-d vibration data can harm the natural property of vibration signal. To augment vibration data without losing the properties of its physics, the proposed method generate new samples by editing the cepstrum which can be done by adjusting the cepstrum component of interest. By doing reverse transform to the edited cepstrum, the new samples is obtained and this results augmented dataset which leads to higher accuracy for the diagnostic model. The third research thrust suggests a new parameter repurposing method for parameter transfer, which is used for transfer learning. The proposed SPF selectively freezes transferred parameters from source network and re-train only unnecessary parameters for target domain to reduce overfitting and preserve useful source features when the target data is limited to train diagnostic model.๋”ฅ๋Ÿฌ๋‹์€ ๊ธฐ๊ณ„ ์‘์šฉ ๋ถ„์•ผ์˜ ๊ฒฐํ•จ ์ง„๋‹จ์„ ์œ„ํ•œ ์œ ๋งํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์€ ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜์—ฌ ์ง„๋‹จ ๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ๋Š” ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป์„ ์ˆ˜ ์—†๊ฑฐ๋‚˜ ์–ป์„ ์ˆ˜ ์žˆ๋”๋ผ๋„ ๊ณ ์žฅ ๋ฐ์ดํ„ฐ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํš๋“ํ•˜๊ธฐ ๋งค์šฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋”ฅ๋Ÿฌ๋‹ ๋ฐฉ๋ฒ•์˜ ์‚ฌ์šฉ์€ ์‰ฝ์ง€ ์•Š๋‹ค. ํšŒ์ „ ๊ธฐ๊ณ„์˜ ์ง„๋‹จ์„ ์œ„ํ•˜์—ฌ ๋”ฅ๋Ÿฌ๋‹์„ ํ•™์Šต์‹œํ‚ฌ ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ณ ์žฅ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ์— ๋Œ€์ฒ˜ํ•˜๊ธฐ ์œ„ํ•ด ์ด ๋…ผ๋ฌธ์€ 3 ๊ฐ€์ง€ ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. 1) ํ–ฅ์ƒ๋œ ์ง„๋™ ํŠน์ง• ํ•™์Šต์„ ์œ„ํ•œ ํ•„ํ„ฐ-์—”๋ฒจ๋กญ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ 2) ์ง„๋™๋ฐ์ดํ„ฐ ์ƒ์„ฑ์„ ์œ„ํ•œ Cepstrum ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ฆ๋Ÿ‰๋ฒ•3) ์ „์ด ํ•™์Šต์—์„œ ํšจ์œจ์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด๋ฅผ ์œ„ํ•œ ์„ ํƒ์  ํŒŒ๋ผ๋ฏธํ„ฐ ๋™๊ฒฐ๋ฒ•. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ง„๋™ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ฐ•๊ฑดํ•œ ํŠน์ง•์„ ๋ฐฐ์šฐ๊ธฐ ์œ„ํ•ด ์‹ ๊ฒฝ๋ง์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ๋„คํŠธ์›Œํฌ ๋ธ”๋ก๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ํฌํ•จํ•˜๋Š” ์ข…๋ž˜์˜ ์‹ ๊ฒฝ๋ง์€ ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ์ž‘์€ ๊ฒฝ์šฐ์— ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํŽธํ–ฅ๋œ ํŠน์ง•์„ ๋ฐฐ์šฐ๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋‹ค๋ฅธ ์กฐ๊ฑด์—์„œ ์ž‘๋™ํ•˜๋Š” ๊ฒฝ์šฐ๋‚˜ ๋‹ค๋ฅธ ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ์ ์šฉ๋˜์—ˆ์„ ๋•Œ ๋‚ฎ์€ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ์‹ ๊ฒฝ๋ง์— ํ•จ๊ป˜ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ•„ํ„ฐ ๋ธ”๋ก ๋ฐ ์—”๋ฒจ๋กญ ๋ธ”๋ก์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ ๋ธ”๋ก์€ ์ฃผํŒŒ์ˆ˜ ํ•„ํ„ฐ์™€ ์—”๋ฒจ๋กญ ์ถ”์ถœ ๊ธฐ๋Šฅ์„ ๋„คํŠธ์›Œํฌ ๋‚ด์—์„œ ์Šค์Šค๋กœ ํ•™์Šตํ•˜์—ฌ ์‹ ๊ฒฝ๋ง์ด ์ œํ•œ๋œ ํ•™์Šต ์ง„๋™๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๋ณด๋‹ค ๊ฐ•๊ฑดํ•˜๊ณ  ์ผ๋ฐ˜ํ™” ๋œ ํŠน์ง•์„ ํ•™์Šตํ•˜๋„๋ก ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ง„๋™ ์‹ ํ˜ธ์˜ ์ง„๋‹จ ๋ฐ์ดํ„ฐ์— ํŠนํ™”๋œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์ฆ๋Ÿ‰๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋’ค์ง‘๊ธฐ, ํšŒ์ „ ๋˜๋Š” ์ „๋‹จ๊ณผ ๊ฐ™์€ ๋ฐ์ดํ„ฐ ํ™•๋Œ€๋ฅผ ์œ„ํ•œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ์œ„ํ•œ ๊ธฐ์กด์˜ ๊ธฐ์ˆ ์ด 1 ์ฐจ์› ์ง„๋™ ๋ฐ์ดํ„ฐ์— ์ ํ•ฉํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ง„๋™ ์‹ ํ˜ธ์˜ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์— ๋งž์ง€ ์•Š๋Š” ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ์žƒ์ง€ ์•Š๊ณ  ์ง„๋™ ๋ฐ์ดํ„ฐ๋ฅผ ์ฆ๋Ÿ‰ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ cepstrum์˜ ์ฃผ์š”์„ฑ๋ถ„์„ ์ถ”์ถœํ•˜๊ณ  ์กฐ์ •ํ•˜์—ฌ ์—ญ cepstrum์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ƒˆ๋กœ์šด ์ƒ˜ํ”Œ์„ ์ƒ์„ฑํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ์ฆ๋Ÿ‰๋ค ๋ฐ์ดํ„ฐ์„ธํŠธ๋Š” ์ง„๋‹จ ๋ชจ๋ธ ํ•™์Šต์— ๋Œ€ํ•ด ์„ฑ๋Šฅํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜จ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ „์ด ํ•™์Šต์— ์‚ฌ์šฉ๋˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ ์žฌํ•™์Šต๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์„ ํƒ์  ํŒŒ๋ผ๋ฏธํ„ฐ ๋™๊ฒฐ๋ฒ•์€ ์†Œ์Šค ๋„คํŠธ์›Œํฌ์—์„œ ์ „์ด๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๋™๊ฒฐํ•˜๊ณ  ๋Œ€์ƒ ๋„๋ฉ”์ธ์— ๋Œ€ํ•ด ๋ถˆํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋งŒ ์žฌํ•™์Šตํ•˜์—ฌ ๋Œ€์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ์ง„๋‹จ ๋ชจ๋ธ์— ์žฌํ•™์Šต๋  ๋•Œ์˜ ๊ณผ์ ํ•ฉ์„ ์ค„์ด๊ณ  ์†Œ์Šค ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ์„ ๋ณด์กดํ•œ๋‹ค. ์ œ์•ˆ๋œ ์„ธ ๋ฐฉ๋ฒ•์€ ๋…๋ฆฝ์ ์œผ๋กœ ๋˜๋Š” ๋™์‹œ์— ์ง„๋‹จ๋ชจ๋ธ์— ์‚ฌ์šฉ๋˜์–ด ๋ถ€์กฑํ•œ ๊ณ ์žฅ๋ฐ์ดํ„ฐ๋กœ ์ธํ•œ ์ง„๋‹จ์„ฑ๋Šฅ์˜ ๊ฐ์†Œ๋ฅผ ๊ฒฝ๊ฐํ•˜๊ฑฐ๋‚˜ ๋” ๋†’์€ ์„ฑ๋Šฅ์„ ์ด๋Œ์–ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค.Chapter 1 Introduction 13 1.1 Motivation 13 1.2 Research Scope and Overview 15 1.3 Structure of the Thesis 19 Chapter 2 Literature Review 20 2.1 Deep Neural Networks 20 2.2 Transfer Learning and Parameter Transfer 23 Chapter 3 Description of Testbed Data 26 3.1 Bearing Data I: Case Western Reserve University Data 26 3.2 Bearing Data II: Accelerated Life Test Test-bed 27 Chapter 4 Filter-Envelope Blocks in Neural Network for Robust Feature Learning 32 4.1 Preliminary Study of Problems In Use of CNN for Vibration Signals 34 4.1.1 Class Confusion Problem of CNN Model to Different Conditions 34 4.1.2 Benefits of Frequency Filtering and Envelope Extraction for Fault Diagnosis in Vibration Signals 37 4.2 Proposed Network Block 1: Filter Block 41 4.2.1 Spectral Feature Learning in Neural Network 42 4.2.2 FIR Band-pass Filter in Neural Network 45 4.2.3 Result and Discussion 48 4.3 Proposed Neural Block 2: Envelope Block 48 4.3.1 Max-Average Pooling Block for Envelope Extraction 51 4.3.2 Adaptive Average Pooling for Learnable Envelope Extractor 52 4.3.3 Result and Discussion 54 4.4 Filter-Envelope Network for Fault Diagnosis 56 4.4.1 Combinations of Filter-Envelope Blocks for the use of Rolling Element Bearing Fault Diagnosis 56 4.4.2 Summary and Discussion 58 Chapter 5 Cepstrum Editing Based Data Augmentation for Vibration Signals 59 5.1 Brief Review of Data Augmentation for Deep Learning 59 5.1.1 Image Augmentation to Enlarge Training Dataset 59 5.1.2 Data Augmentation for Vibration Signal 61 5.2 Cepstrum Editing based Data Augmentation 62 5.2.1 Cepstrum Editing as a Signal Preprocessing 62 5.2.2 Cepstrum Editing based Data Augmentation 64 5.3 Results and Discussion 65 5.3.1 Performance validation to rolling element bearing diagnosis 65 Chapter 6 Selective Parameter Freezing for Parameter Transfer with Small Dataset 71 6.1 Overall Procedure of Selective Parameter Freezing 72 6.2 Determination Sensitivity of Source Network Parameters 75 6.3 Case Study 1: Transfer to Different Fault Size 76 6.3.1 Performance by hyperparameter ฮฑ 77 6.3.2 Effect of the number of training samples and network size 79 6.4 Case Study 2: Transfer from Artificial to Natural Fault 81 6.4.1 Diagnostic performance for proposed method 82 6.4.2 Visualization of frozen parameters by hyperparameter ฮฑ 83 6.4.3 Visual inspection of feature space 85 6.5 Conclusion 87 Chapter 7 91 7.1 Contributions and Significance 91Docto

    ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œํ–ฅ ์ด์ƒ ๊ฐ•๋„ ์ถ”์ •

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2019. 2. ์œค๋ณ‘๋™.์ด ์—ฐ๊ตฌ๋Š” ๊ทน๋‹จ์ ์ธ ์ •์ƒ๊ณผ ์ด์ƒ ์Œํ–ฅ ์‹ ํ˜ธ๋งŒ์„ ํ•™์Šตํ•˜์—ฌ, ์ž„์˜์˜ ์Œํ–ฅ ์‹ ํ˜ธ์˜ ์ด์ƒ ์ •๋„๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์šฐ์„  ์—ฐ์†์ ์œผ๋กœ ๊ฐ•๋„๊ฐ€ ๋ณ€ํ™”ํ•˜๋Š” ์ด์ƒ ์Œํ–ฅ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ์ข…๋ฅ˜์˜ ์ด์ƒ ์‹ ํ˜ธ๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ํ•ฉ์„ฑํ•˜์˜€๋‹ค. ์ •์ƒ๊ณผ ์‹ฌํ•œ ์ด์ƒ ์Œํ–ฅ์„ ์ŠคํŽ™ํŠธ๋กœ๊ทธ๋žจ์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ๋กœ ์ด๋ฏธ ๊ฐ€์ค‘์น˜๊ฐ€ ํ•™์Šต๋œ CNN ๋ชจ๋ธ๋กœ ๋ถ„๋ฅ˜๋ฅผ ์‹œ๋„ํ•œ ๊ฒฐ๊ณผ, ์•„์ฃผ ๋†’์€ ์ˆ˜์ค€์˜ ์ •ํ™•๋„๋กœ ๋ถ„๋ฅ˜๊ฐ€ ๊ฐ€๋Šฅํ•œ ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ๊ณผ์ •์—์„œ ํ•™์Šต๋œ ๋ชจ๋ธ๋กœ๋„ ์ค‘๊ฐ„ ์ •๋„์˜ ์ด์ƒ ์Œํ–ฅ์„ ๊ตฌ๋ถ„ํ•ด๋‚ผ ์ˆ˜ ์—†์—ˆ๋‹ค. ์ด ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ ์šฐ๋ฆฌ๋Š” ์ž ์žฌ ๊ณต๊ฐ„์˜ ํŠน์ง• ์ธ์ž๋ฅผ ์ถ”์ถœํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ํŠน์ง• ์ธ์ž์˜ ์ฐจ์›์„ ์ถ•์†Œํ•œ ๊ฒฐ๊ณผ, ์ด์ƒ ์ •๋„์˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ์ฐจ์› ์ถ•์†Œ๋œ ์ธ์ž ๊ฐ’์ด ์„œ์„œํžˆ ๋ณ€ํ•˜๋Š” ํ˜„์ƒ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์ด ํ˜„์ƒ์€ ์ •์ƒ ์ƒํƒœ์™€ ์ด์ƒ ์ƒํƒœ์˜ ํŠน์ง• ์ธ์ž ๊ตฐ์ง‘ ์‚ฌ์ด์— ์ค‘๊ฐ„ ์ •๋„์˜ ์ด์ƒ์„ ๊ฐ€์ง„ ์Œํ–ฅ์˜ ํŠน์ง• ์ธ์ž๋ฅผ ์œ„์น˜์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ด ๋ฐฉ๋ฒ•๋ก ์€ ๋น„์Œํ–ฅ ์ง„๋™ ๋ฐ์ดํ„ฐ๋ฅผ ํฌํ•จํ•œ ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ ๊ณ„์ธก๋œ ๋ฐ์ดํ„ฐ๋“ค์— ์ ์šฉ๋˜์—ˆ๋‹ค. ์ œ์‹œ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋„ ์œ ์˜๋ฏธํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์‹œ์ฃผํŒŒ์ˆ˜ ์˜์—ญ ์ƒ์—์„œ ์ƒํƒœ๊ฐ€ ๋ณ€ํ™”ํ•˜๋Š” ์ด์ƒ์— ๊ณตํ†ต์ ์œผ๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ์ œ์‹œํ•˜์˜€๋‹ค.This research proposes a deep learning-based method to estimate an intermediate severity fault state of acoustic data using a model trained only with normal and severe fault labels. First, two types of synthesized acoustic faults with five parameters were designed to simulate a gradually increasing fault. Then, a pretrained CNN model was applied to spectrogram images built from the data. The results from this model prove that classification of both normal and severe faults is possible with high accuracy. However, distinguishing intermediate faults was not possible, even with a fine-tuned model of highest accuracy. To overcome this limitation, latent space features were extracted using the model. Based on this information, the feature values were shown to gradually change as the severity of the fault increased in the reduced-dimension space. This phenomenon suggests that it is possible to map data with intermediate-level faults in the space somewhere between normal and severe fault clusters. The method was tested on real data, including non-acoustic vibrational data. It is anticipated that the proposed method can be applied not only to acoustic signals but also to any signals with a fault characteristic that gradually changes in the time-frequency domain as the fault propagates.Table of Contents Abstract i List of Tables vi List of Figures vii Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Scope of the Research 3 1.3 Thesis Layout 6 Chapter 2. Research Background 7 2.1 Types of Acoustic Faults 7 2.2 Spectrogram 8 2.3 CNN Models 10 2.3.1 VGG-16 and VGG-19 11 2.3.2 ResNet-50 12 2.3.3 InceptionV3 13 2.3.4 Xception 15 2.4 Transfer Learning 16 2.5 Latent Space 17 2.5.1 Latent Space Visualization 17 Chapter 3. Proposed Estimation Method 18 3.1 Simulating Acoustic Fault 18 3.1.1 Modulation Fault 21 3.1.2 Impulsive Fault 22 3.2 Spectrogram Parameters 23 3.3 Transfer Learning and Fine-tuning 25 3.4 Latent Space Visualization 26 Chapter 4. Experiment Result 27 4.1 Synthesized Data 27 4.1.1 Transfer Learning Result 27 4.1.2 Prediction Result 28 4.1.3 Latent Space Visualization Result 32 4.2 Case Western Reserve University Bearing Dataset 35 4.2.1 Latent Space Visualization Result 36 4.3 Unbalanced Fan Data 37 4.3.1 Latent Space Visualization Result 37 Chapter 5. Conclusion and Future Work 39 5.1 Conclusion 39 5.2 Contribution 40 5.3 Future Work 41Maste

    Automaattinen optinen tarkastus pintaliitosprosessissa

    Get PDF
    Pintaliitoksesta on tullut vallitseva tapa kiinnittรครค komponentteja piirilevykokoonpanojen valmistuksessa. Automaattinen optinen tarkastus (AOT, engl. AOI, Automated Optical Inspection) on ollut kรคytรถssรค pintaliitosprosessissa vuosikymmenien ajan. Ensimmรคiset AOT jรคrjestelmรคt kรคyttivรคt yksinkertaista 2D kuvantamista, ja vaikka erilaisia 2D AOT jรคrjestelmiรค on vielรค tรคnรค pรคivรคnรค kรคytรถssรค, useissa nykyaikaisissa jรคrjestelmissรค hyรถdynnetรครคn 3D kuvantamistekniikoita. Kuvankรคsittelyn kehittyminen ja tietokoneiden laskentatehon kasvaminen mahdollistavat yhรค tarkempien AOT jรคrjestelmien toteuttamisen. Tรคssรค tyรถssรค selvitetรครคn, mitรค hyรถtyjรค saadaan AOT:n kรคytรถstรค pintaliitosprosessissa, mitรค haasteita siinรค on, sekรค mitรค tarkastuksia tehdรครคn optisen tarkastuksen lisรคksi. Lisรคksi kรคydรครคn lyhyesti lรคpi sekรค pintaliitosprosessi ettรค optinen tarkastus. Tyรถ tehtiin kirjallisuusselvityksenรค. Tyรถn lรคhteissรค keskityttiin erityisesti tutkimuksiin, joiden aiheena oli pintaliitosprosessissa kรคytettรคvien optisten tarkastusten kehittรคminen. AOT on tรคrkeรคssรค roolissa pintaliitosprosessin laadunvalvonnassa. Pintaliitosprosessissa AOT:illa tehdรครคn tyypillisesti kolme eri tarkastusta: juotospastan tarkastus, reflow-juotosta edeltรคvรค tarkastus ja reflow-juotoksen jรคlkeinen tarkastus. Eri vaiheiden tarkastuksilla voidaan sekรค havaita ettรค ehkรคistรค prosessissa tapahtuvia virheitรค. Lisรคksi tarkastukset antavat mahdollisuuksia prosessin sรครคtรถรถn ja tilastolliseen prosessinhallintaan. Lรถytรคmรคllรค mahdolliset virheet aikaisin sekรค ennaltaehkรคisemรคllรค virheiden muodostumista minimoidaan virheiden ja niiden korjaamisen aiheuttamat kustannukset. Haasteina AOT:llรค on erityisesti nykyaikaisen kokoonpanon komponenttien pienuus ja suuri mรครคrรค. Juotospastan tarkastuksessa tarvitaan 3D-kuvantamista ja virherajojen asettaminen on hankalaa. Reflow-juotosta edeltรคvรคssรค tarkastuksessa komponenttien heterogeenisyys voi aiheuttaa ongelmia, kun taas reflow-juotoksen jรคlkeisessรค tarkastuksessa juotoksien heijastava pinta sekรค tarkastettavien kohteiden ja virhetyyppien suuri mรครคrรค tekee tarkastuksesta haastavaa. Optisella tarkastuksella ei pystytรค tarkastamaan alta juottuvia komponentteja, kuten BGA-paketteja (engl. Ball Grid Array), joiden kรคyttรถ on lisรครคntynyt piirilevykokoonpanoissa. ART (Au-tomaattinen Rรถntgen Tarkastus, engl. AXI, Automated X-ray Inspection) voidaan tehdรค reflow-juotoksen jรคlkeen, joko optisen tarkastuksen lisรคksi tai sen sijaan. ART:llรค pystytรครคn tarkasta-maan optiselta tarkastukselta peitossa olevat juotokset, sekรค lรถytรคmรครคn juotoksien sisรคllรค mahdollisesti olevia virheitรค. ART-jรคrjestelmรคt ovat kuitenkin tyypillisesti hitaampia ja kalliimpia kuin AOT-jรคrjestelmรคt. Reflow-juotoksen jรคlkeisen tarkastuksen lisรคksi tehdรครคn sรคhkรถisiรค ja funktionaalisia tarkastuksia. Nรคmรค tarkastukset ovat viimeiset tarkastukset prosessissa ja niillรค varmistetaan, ettรค tuote toimii oikein
    corecore