56 research outputs found

    Towards Zero-Shot Code-Switched Speech Recognition

    Get PDF
    In this work, we seek to build effective code-switched (CS) automatic speech recognition systems (ASR) under the zero-shot setting where no transcribed CS speech data is available for training. Previously proposed frameworks which conditionally factorize the bilingual task into its constituent monolingual parts are a promising starting point for leveraging monolingual data efficiently. However, these methods require the monolingual modules to perform language segmentation. That is, each monolingual module has to simultaneously detect CS points and transcribe speech segments of one language while ignoring those of other languages -- not a trivial task. We propose to simplify each monolingual module by allowing them to transcribe all speech segments indiscriminately with a monolingual script (i.e. transliteration). This simple modification passes the responsibility of CS point detection to subsequent bilingual modules which determine the final output by considering multiple monolingual transliterations along with external language model information. We apply this transliteration-based approach in an end-to-end differentiable neural network and demonstrate its efficacy for zero-shot CS ASR on Mandarin-English SEAME test sets.Comment: 5 page

    On Classification in Human-driven and Data-driven Systems

    Get PDF
    Classification systems are ubiquitous, and the design of effective classification algorithms has been an even more active area of research since the emergence of machine learning techniques. Despite the significant efforts devoted to training and feature selection in classification systems, misclassifications do occur and their effects can be critical in various applications. The central goal of this thesis is to analyze classification problems in human-driven and data-driven systems, with potentially unreliable components and design effective strategies to ensure reliable and effective classification algorithms in such systems. The components/agents in the system can be machines and/or humans. The system components can be unreliable due to a variety of reasons such as faulty machines, security attacks causing machines to send falsified information, unskilled human workers sending imperfect information, or human workers providing random responses. This thesis first quantifies the effect of such unreliable agents on the classification performance of the systems and then designs schemes that mitigate misclassifications and their effects by adapting the behavior of the classifier on samples from machines and/or humans and ensure an effective and reliable overall classification. In the first part of this thesis, we study the case when only humans are present in the systems, and consider crowdsourcing systems. Human workers in crowdsourcing systems observe the data and respond individually by providing label related information to a fusion center in a distributed manner. In such systems, we consider the presence of unskilled human workers where they have a reject option so that they may choose not to provide information regarding the label of the data. To maximize the classification performance at the fusion center, an optimal aggregation rule is proposed to fuse the human workers\u27 responses in a weighted majority voting manner. Next, the presence of unreliable human workers, referred to as spammers, is considered. Spammers are human workers that provide random guesses regarding the data label information to the fusion center in crowdsourcing systems. The effect of spammers on the overall classification performance is characterized when the spammers can strategically respond to maximize their reward in reward-based crowdsourcing systems. For such systems, an optimal aggregation rule is proposed by adapting the classifier based on the responses from the workers. The next line of human-driven classification is considered in the context of social networks. The classification problem is studied to classify a human whether he/she is influential or not in propagating information in social networks. Since the knowledge of social network structures is not always available, the influential agent classification problem without knowing the social network structure is studied. A multi-task low rank linear influence model is proposed to exploit the relationships between different information topics. The proposed approach can simultaneously predict the volume of information diffusion for each topic and automatically classify the influential nodes for each topic. In the third part of the thesis, a data-driven decentralized classification framework is developed where machines interact with each other to perform complex classification tasks. However, the machines in the system can be unreliable due to a variety of reasons such as noise, faults and attacks. Providing erroneous updates leads the classification process in a wrong direction, and degrades the performance of decentralized classification algorithms. First, the effect of erroneous updates on the convergence of the classification algorithm is analyzed, and it is shown that the algorithm linearly converges to a neighborhood of the optimal classification solution. Next, guidelines are provided for network design to achieve faster convergence. Finally, to mitigate the impact of unreliable machines, a robust variant of ADMM is proposed, and its resilience to unreliable machines is shown with an exact convergence to the optimal classification result. The final part of research in this thesis considers machine-only data-driven classification problems. First, the fundamentals of classification are studied in an information theoretic framework. We investigate the nonparametric classification problem for arbitrary unknown composite distributions in the asymptotic regime where both the sample size and the number of classes grow exponentially large. The notion of discrimination capacity is introduced, which captures the largest exponential growth rate of the number of classes relative to the samples size so that there exists a test with asymptotically vanishing probability of error. Error exponent analysis using the maximum mean discrepancy is provided and the discrimination rate, i.e., lower bound on the discrimination capacity is characterized. Furthermore, an upper bound on the discrimination capacity based on Fano\u27s inequality is developed

    Crowd-supervised training of spoken language systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-166).Spoken language systems are often deployed with static speech recognizers. Only rarely are parameters in the underlying language, lexical, or acoustic models updated on-the-fly. In the few instances where parameters are learned in an online fashion, developers traditionally resort to unsupervised training techniques, which are known to be inferior to their supervised counterparts. These realities make the development of spoken language interfaces a difficult and somewhat ad-hoc engineering task, since models for each new domain must be built from scratch or adapted from a previous domain. This thesis explores an alternative approach that makes use of human computation to provide crowd-supervised training for spoken language systems. We explore human-in-the-loop algorithms that leverage the collective intelligence of crowds of non-expert individuals to provide valuable training data at a very low cost for actively deployed spoken language systems. We also show that in some domains the crowd can be incentivized to provide training data for free, as a byproduct of interacting with the system itself. Through the automation of crowdsourcing tasks, we construct and demonstrate organic spoken language systems that grow and improve without the aid of an expert. Techniques that rely on collecting data remotely from non-expert users, however, are subject to the problem of noise. This noise can sometimes be heard in audio collected from poor microphones or muddled acoustic environments. Alternatively, noise can take the form of corrupt data from a worker trying to game the system - for example, a paid worker tasked with transcribing audio may leave transcripts blank in hopes of receiving a speedy payment. We develop strategies to mitigate the effects of noise in crowd-collected data and analyze their efficacy. This research spans a number of different application domains of widely-deployed spoken language interfaces, but maintains the common thread of improving the speech recognizer's underlying models with crowd-supervised training algorithms. We experiment with three central components of a speech recognizer: the language model, the lexicon, and the acoustic model. For each component, we demonstrate the utility of a crowd-supervised training framework. For the language model and lexicon, we explicitly show that this framework can be used hands-free, in two organic spoken language systems.by Ian C. McGraw.Ph.D

    Speech recognition with probabilistic transcriptions and end-to-end systems using deep learning

    Get PDF
    In this thesis, we develop deep learning models in automatic speech recognition (ASR) for two contrasting tasks characterized by the amounts of labeled data available for training. In the first half, we deal with scenarios when there are limited or no labeled data for training ASR systems. This situation is commonly prevalent in languages which are under-resourced. However, in the second half, we train ASR systems with large amounts of labeled data in English. Our objective is to improve modern end-to-end (E2E) ASR using attention modeling. Thus, the two primary contributions of this thesis are the following: Cross-Lingual Speech Recognition in Under-Resourced Scenarios: A well-resourced language is a language with an abundance of resources to support the development of speech technology. Those resources are usually defined in terms of 100+ hours of speech data, corresponding transcriptions, pronunciation dictionaries, and language models. In contrast, an under-resourced language lacks one or more of these resources. The most expensive and time-consuming resource is the acquisition of transcriptions due to the difficulty in finding native transcribers. The first part of the thesis proposes methods by which deep neural networks (DNNs) can be trained when there are limited or no transcribed data in the target language. Such scenarios are common for languages which are under-resourced. Two key components of this proposition are Transfer Learning and Crowdsourcing. Through these methods, we demonstrate that it is possible to borrow statistical knowledge of acoustics from a variety of other well-resourced languages to learn the parameters of a the DNN in the target under-resourced language. In particular, we use well-resourced languages as cross-entropy regularizers to improve the generalization capacity of the target language. A key accomplishment of this study is that it is the first to train DNNs using noisy labels in the target language transcribed by non-native speakers available in online marketplaces. End-to-End Large Vocabulary Automatic Speech Recognition: Recent advances in ASR have been mostly due to the advent of deep learning models. Such models have the ability to discover complex non-linear relationships between attributes that are usually found in real-world tasks. Despite these advances, building a conventional ASR system is a cumbersome procedure since it involves optimizing several components separately in a disjoint fashion. To alleviate this problem, modern ASR systems have adopted a new approach of directly transducing speech signals to text. Such systems are known as E2E systems and one such system is the Connectionist Temporal Classification (CTC). However, one drawback of CTC is the hard alignment problem as it relies only on the current input to generate the current output. In reality, the output at the current time is influenced not only by the current input but also by inputs in the past and the future. Thus, the second part of the thesis proposes advancing state-of-the-art E2E speech recognition for large corpora by directly incorporating attention modeling within the CTC framework. In attention modeling, inputs in the current, past, and future are distinctively weighted depending on the degree of influence they exert on the current output. We accomplish this by deriving new context vectors using time convolution features to model attention as part of the CTC network. To further improve attention modeling, we extract more reliable content information from a network representing an implicit language model. Finally, we used vector based attention weights that are applied on context vectors across both time and their individual components. A key accomplishment of this study is that it is the first to incorporate attention directly within the CTC network. Furthermore, we show that our proposed attention-based CTC model, even in the absence of an explicit language model, is able to achieve lower word error rates than a well-trained conventional ASR system equipped with a strong external language model

    Incorporating Weak Statistics for Low-Resource Language Modeling

    Get PDF
    Automatic speech recognition (ASR) requires a strong language model to guide the acoustic model and favor likely utterances. While many tasks enjoy billions of language model training tokens, many domains which require ASR do not have readily available electronic corpora.The only source of useful language modeling data is expensive and time-consuming human transcription of in-domain audio. This dissertation seeks to quickly and inexpensively improve low-resource language modeling for use in automatic speech recognition. This dissertation first considers efficient use of non-professional human labor to best improve system performance, and demonstrate that it is better to collect more data, despite higher transcription error, than to redundantly transcribe data to improve quality. In the process of developing procedures to collect such data, this work also presents an efficient rating scheme to detect poor transcribers without gold standard data. As an alternative to this process, automatic transcripts are generated with an ASR system and explore efficiently combining these low-quality transcripts with a small amount of high quality transcripts. Standard n-gram language models are sensitive to the quality of the highest order n-gram and are unable to exploit accurate weaker statistics. Instead, a log-linear language model is introduced, which elegantly incorporates a variety of background models through MAP adaptation. This work introduces marginal class constraints which effectively capture knowledge of transcriber error and improve performance over n-gram features. Finally, this work constrains the language modeling task to keyword search of words unseen in the training text. While overall system performance is good, these words suffer the most due to a low probability in the language model. Semi-supervised learning effectively extracts likely n-grams containing these new keywords from a large corpus of audio. By using a search metric that favors recall over precision, this method captures over 80% of the potential gain

    Pronunciation modelling in end-to-end text-to-speech synthesis

    Get PDF
    Sequence-to-sequence (S2S) models in text-to-speech synthesis (TTS) can achieve high-quality naturalness scores without extensive processing of text-input. Since S2S models have been proposed in multiple aspects of the TTS pipeline, the field has focused on embedding the pipeline toward End-to-End (E2E-) TTS where a waveform is predicted directly from a sequence of text or phone characters. Early work on E2ETTS in English, such as Char2Wav [1] and Tacotron [2], suggested that phonetisation (lexicon-lookup and/or G2P modelling) could be implicitly learnt in a text-encoder during training. The benefits of a learned text encoding include improved modelling of phonetic context, which make contextual linguistic features traditionally used in TTS pipelines redundant [3]. Subsequent work on E2E-TTS has since shown similar naturalness scores with text- or phone-input (e.g. as in [4]). Successful modelling of phonetic context has led some to question the benefit of using phone- instead of text-input altogether (see [5]). The use of text-input brings into question the value of the pronunciation lexicon in E2E-TTS. Without phone-input, a S2S encoder learns an implicit grapheme-tophoneme (G2P) model from text-audio pairs during training. With common datasets for E2E-TTS in English, I simulated implicit G2P models, finding increased error rates compared to a traditional, lexicon-based G2P model. Ultimately, successful G2P generalisation is difficult for some words (e.g. foreign words and proper names) since the knowledge to disambiguate their pronunciations may not be provided by the local grapheme context and may require knowledge beyond that contained in sentence-level text-audio sequences. When test stimuli were selected according to G2P difficulty, increased mispronunciations in E2E-TTS with text-input were observed. Following the proposed benefits of subword decomposition in S2S modelling in other language tasks (e.g. neural machine translation), the effects of morphological decomposition were investigated on pronunciation modelling. Learning of the French post-lexical phenomenon liaison was also evaluated. With the goal of an inexpensive, large-scale evaluation of pronunciation modelling, the reliability of automatic speech recognition (ASR) to measure TTS intelligibility was investigated. A re-evaluation of 6 years of results from the Blizzard Challenge was conducted. ASR reliably found similar significant differences between systems as paid listeners in controlled conditions in English. An analysis of transcriptions for words exhibiting difficult-to-predict G2P relations was also conducted. The E2E-ASR Transformer model used was found to be unreliable in its transcription of difficult G2P relations due to homophonic transcription and incorrect transcription of words with difficult G2P relations. A further evaluation of representation mixing in Tacotron finds pronunciation correction is possible when mixing text- and phone-inputs. The thesis concludes that there is still a place for the pronunciation lexicon in E2E-TTS as a pronunciation guide since it can provide assurances that G2P generalisation cannot

    Rapid Generation of Pronunciation Dictionaries for new Domains and Languages

    Get PDF
    This dissertation presents innovative strategies and methods for the rapid generation of pronunciation dictionaries for new domains and languages. Depending on various conditions, solutions are proposed and developed. Starting from the straightforward scenario in which the target language is present in written form on the Internet and the mapping between speech and written language is close up to the difficult scenario in which no written form for the target language exists
    corecore