5 research outputs found

    An adaptive dwell time scheduling model for phased array radar based on three-way decision

    Get PDF
    Real-time resource allocation is crucial for phased array radars to undertake multi-task with limited resources such as in the situation of multi-target tracking, in which targets need to be prioritized so that resources can be allocated accordingly and effectively. In this paper, a three-way decision-based model is proposed for adaptive scheduling of phased radar dwell time. Using the model, the threat posed by a target is measured by an evaluation function, and therefore, a target is assigned to one of the three possible decision regions, i.e., positive region, negative region, and boundary region. A different region has a various priority in terms of resource demand, and as such, a different radar resource allocation decision is applied to each region to satisfy different tracking accuracy of multi-target. In addition, the dwell time scheduling model can be further optimized by implementing a strategy for determining a proper threshold of three-way decision making to optimize the thresholds adaptively in real-time. The advantages and the performance of the proposed model has been verified by experimental simulations with comparison to the traditional two-way decision model and the three-way decision model without threshold optimization. The experiential results have demonstrated that the performance of the proposed model has a certain advantage in detecting high threat targets. 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Spam Detection Using Machine Learning and Deep Learning

    Get PDF
    Text messages are essential these days; however, spam texts have contributed negatively to the success of this communication mode. The compromised authenticity of such messages has given rise to several security breaches. Using spam messages, malicious links have been sent to either harm the system or obtain information detrimental to the user. Spam SMS messages as well as emails have been used as media for attacks such as masquerading and smishing ( a phishing attack through text messaging), and this has threatened both the user and service providers. Therefore, given the waves of attacks, the need to identify and remove these spam messages is important. This dissertation explores the process of text classification from data input to embedded representation of the words in vector form and finally the classification process. Therefore, we have applied different embedding methods to capture both the linguistic and semantic meanings of words. Static embedding methods that are used include Word to Vector (Word2Vec) and Global Vectors (GloVe), while for dynamic embedding the transfer learning of the Bidirectional Encoder Representations from Transformers (BERT) was employed. For classification, both machine learning and deep learning techniques were used to build an efficient and sensitive classification model with good accuracy and low false positive rate. Our result established that the combination of BERT for embedding and machine learning for classification produced better classification results than other combinations. With these results, we developed models that combined the self-feature extraction advantage of deep learning and the effective classification of machine learning. These models were tested on four different datasets, namely: SMS Spam dataset, Ling dataset, Spam Assassin dataset and Enron dataset. BERT+SVC (hybrid model) produced the result with highest accuracy and lowest false positive rate

    Transactions on Rough Sets XVIII

    No full text

    Transactions on Rough Sets XVIII

    No full text
    corecore