24,923 research outputs found

    Systems approaches and algorithms for discovery of combinatorial therapies

    Full text link
    Effective therapy of complex diseases requires control of highly non-linear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of signaling in cellular networks. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination therapy and to the incomplete knowledge of the systems biology of cells. In this review paper we describe the main current and proposed approaches to the design of combinatorial therapies, including the empirical methods used now by clinicians and alternative approaches suggested recently by several authors. New approaches for designing combinations arising from systems biology are described. We discuss in special detail the design of algorithms that identify optimal control parameters in cellular networks based on a quantitative characterization of control landscapes, maximizing utilization of incomplete knowledge of the state and structure of intracellular networks. The use of new technology for high-throughput measurements is key to these new approaches to combination therapy and essential for the characterization of control landscapes and implementation of the algorithms. Combinatorial optimization in medical therapy is also compared with the combinatorial optimization of engineering and materials science and similarities and differences are delineated.Comment: 25 page

    Early Diagnosis of Alzheimer's Disease by NIRF Spectroscopy\ud and Nuclear Medicine\ud

    Get PDF
    Novel approaches to Early Diagnosis of Alzheimer's Disease by NIRF Spectroscopy and Nuclear Medicine are presented and related cognitive, as well as molecular and cellular, models are critically evaluated.\u

    Early Diagnosis of Alzheimer's disease by NIRF Spectroscopy and Nuclear Medicine-v.4.0

    Get PDF
    There is an urgent need for the early detection of diseases such as Alzheimer’s (AD) and Cancers in order to enable their successful treatment. Cancer is the second major cause of death after Heart Disease, and AD is the third major cause of death with major, human and financial/economics trillion dollar consequences for the society. Nuclear Medicine is concerned with applications in Medicine of Nuclear Science and Engineering techniques and knowledge. Three major Nuclear Medicine techniques that are established for diagnostic and research purposes are: Positron Emission Tomography (PET) and CAT/CT, Nuclear Magnetic Resonance Imaging (NMRI/MRI). However, these three techniques have also major limitations in terms of either cost or image resolution, as well as patient irradiation in the case of CAT/CT and PET. On the other hand, Near Infrared Chemical Imaging Microspectroscopy and certain Fluorescence spectroscopic techniques are capable of single cancer cell and/or single molecule detection and/or imaging. Such powerful capabilities, combined with low cost of diagnostics, make these novel techniques very attractive means for early detection of diseases such as cancer and Alzheimer’s, that are promising to reduce the fatality rate of patients through adequate diagnosis and treatment of such diseases at early stages. 
Currently NIH provides only inadequate funding for the clinical and research aspects of these novel investigation and clinical diagnostic techniques by FT-NIRS and Fluorescence spectrocopy for early detection of Alzheimer’s and Cancers.
&#xa

    Nature as a Network of Morphological Infocomputational Processes for Cognitive Agents

    Get PDF
    This paper presents a view of nature as a network of infocomputational agents organized in a dynamical hierarchy of levels. It provides a framework for unification of currently disparate understandings of natural, formal, technical, behavioral and social phenomena based on information as a structure, differences in one system that cause the differences in another system, and computation as its dynamics, i.e. physical process of morphological change in the informational structure. We address some of the frequent misunderstandings regarding the natural/morphological computational models and their relationships to physical systems, especially cognitive systems such as living beings. Natural morphological infocomputation as a conceptual framework necessitates generalization of models of computation beyond the traditional Turing machine model presenting symbol manipulation, and requires agent-based concurrent resource-sensitive models of computation in order to be able to cover the whole range of phenomena from physics to cognition. The central role of agency, particularly material vs. cognitive agency is highlighted

    Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification

    Get PDF
    We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring little to no parameter tuning) that perform competitively across multiple datasets. The state-of-the-art classifiers examined in this study include the support vector machine, Gaussian process classifiers, random subspace of adaboost, random subspace of rotation boosting, and deep learning classifiers. We demonstrate that a heterogeneous ensemble based on the simple fusion by sum rule of different classifiers performs consistently well across all twenty-five datasets. The most important result of our investigation is demonstrating that some very recent approaches, including the heterogeneous ensemble we propose in this paper, are capable of outperforming an SVM classifier (implemented with LibSVM), even when both kernel selection and SVM parameters are carefully tuned for each dataset

    Early Diagnosis of Alzheimer's disease by NIRF Spectroscopy and Nuclear Medicine

    Get PDF
    There is an urgent need for the early detection of diseases such as Alzheimer’s (AD) and Cancers in order to enable their successful treatment. Cancer is the second major cause of death after Heart Disease, and AD is the third major cause of death with major, human and financial/economics trillion dollar consequences for the society. Nuclear Medicine is concerned with applications in Medicine of Nuclear Science and Engineering techniques and knowledge. Three major Nuclear Medicine techniques that are established for diagnostic and research purposes are: Positron Emission Tomography (PET) and CAT/CT, Nuclear Magnetic Resonance Imaging (NMRI/MRI). However, these three techniques have also major limitations in terms of either cost or image resolution, as well as patient irradiation in the case of CAT/CT and PET. On the other hand, Near Infrared Chemical Imaging Microspectroscopy and certain Fluorescence spectroscopic techniques are capable of single cancer cell and/or single molecule detection and/or imaging. Such powerful capabilities, combined with low cost of diagnostics, make these novel techniques very attractive means for early detection of diseases such as cancer and Alzheimer’s, that are promising to reduce the fatality rate of patients through adequate diagnosis and treatment of such diseases at early stages. 
Currently NIH provides only inadequate funding for the clinical and research aspects of these novel investigation and clinical diagnostic techniques by FT-NIRS and Fluorescence spectrocopy for early detection of Alzheimer's and Cancers
    • …
    corecore