91,191 research outputs found

    A Framework for Transactional Consistency Models with Atomic Visibility

    Get PDF
    Modern distributed systems often rely on databases that achieve scalability by providing only weak guarantees about the consistency of distributed transaction processing. The semantics of programs interacting with such a database depends on its consistency model, defining these guarantees. Unfortunately, consistency models are usually stated informally or using disparate formalisms, often tied to the database internals. To deal with this problem, we propose a framework for specifying a variety of consistency models for transactions uniformly and declaratively. Our specifications are given in the style of weak memory models, using structures of events and relations on them. The specifications are particularly concise because they exploit the property of atomic visibility guaranteed by many consistency models: either all or none of the updates by a transaction can be visible to another one. This allows the specifications to abstract from individual events inside transactions. We illustrate the use of our framework by specifying several existing consistency models. To validate our specifications, we prove that they are equivalent to alternative operational ones, given as algorithms closer to actual implementations. Our work provides a rigorous foundation for developing the metatheory of the novel form of concurrency arising in weakly consistent large-scale databases

    Privatization-Safe Transactional Memories

    Get PDF
    Transactional memory (TM) facilitates the development of concurrent applications by letting the programmer designate certain code blocks as atomic. Programmers using a TM often would like to access the same data both inside and outside transactions, and would prefer their programs to have a strongly atomic semantics, which allows transactions to be viewed as executing atomically with respect to non-transactional accesses. Since guaranteeing such semantics for arbitrary programs is prohibitively expensive, researchers have suggested guaranteeing it only for certain data-race free (DRF) programs, particularly those that follow the privatization idiom: from some point on, threads agree that a given object can be accessed non-transactionally. In this paper we show that a variant of Transactional DRF (TDRF) by Dalessandro et al. is appropriate for a class of privatization-safe TMs, which allow using privatization idioms. We prove that, if such a TM satisfies a condition we call privatization-safe opacity and a program using the TM is TDRF under strongly atomic semantics, then the program indeed has such semantics. We also present a method for proving privatization-safe opacity that reduces proving this generalization to proving the usual opacity, and apply the method to a TM based on two-phase locking and a privatization-safe version of TL2. Finally, we establish the inherent cost of privatization-safety: we prove that a TM cannot be progressive and have invisible reads if it guarantees strongly atomic semantics for TDRF programs

    Improving the Performance and Endurance of Persistent Memory with Loose-Ordering Consistency

    Full text link
    Persistent memory provides high-performance data persistence at main memory. Memory writes need to be performed in strict order to satisfy storage consistency requirements and enable correct recovery from system crashes. Unfortunately, adhering to such a strict order significantly degrades system performance and persistent memory endurance. This paper introduces a new mechanism, Loose-Ordering Consistency (LOC), that satisfies the ordering requirements at significantly lower performance and endurance loss. LOC consists of two key techniques. First, Eager Commit eliminates the need to perform a persistent commit record write within a transaction. We do so by ensuring that we can determine the status of all committed transactions during recovery by storing necessary metadata information statically with blocks of data written to memory. Second, Speculative Persistence relaxes the write ordering between transactions by allowing writes to be speculatively written to persistent memory. A speculative write is made visible to software only after its associated transaction commits. To enable this, our mechanism supports the tracking of committed transaction ID and multi-versioning in the CPU cache. Our evaluations show that LOC reduces the average performance overhead of memory persistence from 66.9% to 34.9% and the memory write traffic overhead from 17.1% to 3.4% on a variety of workloads.Comment: This paper has been accepted by IEEE Transactions on Parallel and Distributed System

    Formal Modelling, Testing and Verification of HSA Memory Models using Event-B

    Full text link
    The HSA Foundation has produced the HSA Platform System Architecture Specification that goes a long way towards addressing the need for a clear and consistent method for specifying weakly consistent memory. HSA is specified in a natural language which makes it open to multiple ambiguous interpretations and could render bugs in implementations of it in hardware and software. In this paper we present a formal model of HSA which can be used in the development and verification of both concurrent software applications as well as in the development and verification of the HSA-compliant platform itself. We use the Event-B language to build a provably correct hierarchy of models from the most abstract to a detailed refinement of HSA close to implementation level. Our memory models are general in that they represent an arbitrary number of masters, programs and instruction interleavings. We reason about such general models using refinements. Using Rodin tool we are able to model and verify an entire hierarchy of models using proofs to establish that each refinement is correct. We define an automated validation method that allows us to test baseline compliance of the model against a suite of published HSA litmus tests. Once we complete model validation we develop a coverage driven method to extract a richer set of tests from the Event-B model and a user specified coverage model. These tests are used for extensive regression testing of hardware and software systems. Our method of refinement based formal modelling, baseline compliance testing of the model and coverage driven test extraction using the single language of Event-B is a new way to address a key challenge facing the design and verification of multi-core systems.Comment: 9 pages, 10 figure

    Deterministic Consistency: A Programming Model for Shared Memory Parallelism

    Full text link
    The difficulty of developing reliable parallel software is generating interest in deterministic environments, where a given program and input can yield only one possible result. Languages or type systems can enforce determinism in new code, and runtime systems can impose synthetic schedules on legacy parallel code. To parallelize existing serial code, however, we would like a programming model that is naturally deterministic without language restrictions or artificial scheduling. We propose "deterministic consistency", a parallel programming model as easy to understand as the "parallel assignment" construct in sequential languages such as Perl and JavaScript, where concurrent threads always read their inputs before writing shared outputs. DC supports common data- and task-parallel synchronization abstractions such as fork/join and barriers, as well as non-hierarchical structures such as producer/consumer pipelines and futures. A preliminary prototype suggests that software-only implementations of DC can run applications written for popular parallel environments such as OpenMP with low (<10%) overhead for some applications.Comment: 7 pages, 3 figure
    • …
    corecore