34,511 research outputs found

    Trajectory-Based Off-Policy Deep Reinforcement Learning

    Full text link
    Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient estimates, and frequently get stuck in local optima. This work addresses these weaknesses by combining recent improvements in the reuse of off-policy data and exploration in parameter space with deterministic behavioral policies. The resulting objective is amenable to standard neural network optimization strategies like stochastic gradient descent or stochastic gradient Hamiltonian Monte Carlo. Incorporation of previous rollouts via importance sampling greatly improves data-efficiency, whilst stochastic optimization schemes facilitate the escape from local optima. We evaluate the proposed approach on a series of continuous control benchmark tasks. The results show that the proposed algorithm is able to successfully and reliably learn solutions using fewer system interactions than standard policy gradient methods.Comment: Includes appendix. Accepted for ICML 201

    Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning

    Full text link
    Model-free deep reinforcement learning algorithms have been shown to be capable of learning a wide range of robotic skills, but typically require a very large number of samples to achieve good performance. Model-based algorithms, in principle, can provide for much more efficient learning, but have proven difficult to extend to expressive, high-capacity models such as deep neural networks. In this work, we demonstrate that medium-sized neural network models can in fact be combined with model predictive control (MPC) to achieve excellent sample complexity in a model-based reinforcement learning algorithm, producing stable and plausible gaits to accomplish various complex locomotion tasks. We also propose using deep neural network dynamics models to initialize a model-free learner, in order to combine the sample efficiency of model-based approaches with the high task-specific performance of model-free methods. We empirically demonstrate on MuJoCo locomotion tasks that our pure model-based approach trained on just random action data can follow arbitrary trajectories with excellent sample efficiency, and that our hybrid algorithm can accelerate model-free learning on high-speed benchmark tasks, achieving sample efficiency gains of 3-5x on swimmer, cheetah, hopper, and ant agents. Videos can be found at https://sites.google.com/view/mbm

    Exploring Restart Distributions

    Get PDF
    We consider the generic approach of using an experience memory to help exploration by adapting a restart distribution. That is, given the capacity to reset the state with those corresponding to the agent's past observations, we help exploration by promoting faster state-space coverage via restarting the agent from a more diverse set of initial states, as well as allowing it to restart in states associated with significant past experiences. This approach is compatible with both on-policy and off-policy methods. However, a caveat is that altering the distribution of initial states could change the optimal policies when searching within a restricted class of policies. To reduce this unsought learning bias, we evaluate our approach in deep reinforcement learning which benefits from the high representational capacity of deep neural networks. We instantiate three variants of our approach, each inspired by an idea in the context of experience replay. Using these variants, we show that performance gains can be achieved, especially in hard exploration problems.Comment: RLDM 201
    • …
    corecore