19,255 research outputs found

    Learning Deep Representations of Appearance and Motion for Anomalous Event Detection

    Full text link
    We present a novel unsupervised deep learning framework for anomalous event detection in complex video scenes. While most existing works merely use hand-crafted appearance and motion features, we propose Appearance and Motion DeepNet (AMDN) which utilizes deep neural networks to automatically learn feature representations. To exploit the complementary information of both appearance and motion patterns, we introduce a novel double fusion framework, combining both the benefits of traditional early fusion and late fusion strategies. Specifically, stacked denoising autoencoders are proposed to separately learn both appearance and motion features as well as a joint representation (early fusion). Based on the learned representations, multiple one-class SVM models are used to predict the anomaly scores of each input, which are then integrated with a late fusion strategy for final anomaly detection. We evaluate the proposed method on two publicly available video surveillance datasets, showing competitive performance with respect to state of the art approaches.Comment: Oral paper in BMVC 201

    Multi-criteria Anomaly Detection using Pareto Depth Analysis

    Full text link
    We consider the problem of identifying patterns in a data set that exhibit anomalous behavior, often referred to as anomaly detection. In most anomaly detection algorithms, the dissimilarity between data samples is calculated by a single criterion, such as Euclidean distance. However, in many cases there may not exist a single dissimilarity measure that captures all possible anomalous patterns. In such a case, multiple criteria can be defined, and one can test for anomalies by scalarizing the multiple criteria using a linear combination of them. If the importance of the different criteria are not known in advance, the algorithm may need to be executed multiple times with different choices of weights in the linear combination. In this paper, we introduce a novel non-parametric multi-criteria anomaly detection method using Pareto depth analysis (PDA). PDA uses the concept of Pareto optimality to detect anomalies under multiple criteria without having to run an algorithm multiple times with different choices of weights. The proposed PDA approach scales linearly in the number of criteria and is provably better than linear combinations of the criteria.Comment: Removed an unnecessary line from Algorithm

    Abnormal Event Detection in Videos using Spatiotemporal Autoencoder

    Full text link
    We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps

    Lost in Time: Temporal Analytics for Long-Term Video Surveillance

    Full text link
    Video surveillance is a well researched area of study with substantial work done in the aspects of object detection, tracking and behavior analysis. With the abundance of video data captured over a long period of time, we can understand patterns in human behavior and scene dynamics through data-driven temporal analytics. In this work, we propose two schemes to perform descriptive and predictive analytics on long-term video surveillance data. We generate heatmap and footmap visualizations to describe spatially pooled trajectory patterns with respect to time and location. We also present two approaches for anomaly prediction at the day-level granularity: a trajectory-based statistical approach, and a time-series based approach. Experimentation with one year data from a single camera demonstrates the ability to uncover interesting insights about the scene and to predict anomalies reasonably well.Comment: To Appear in Springer LNE

    Conflict-driven Hybrid Observer-based Anomaly Detection

    Full text link
    This paper presents an anomaly detection method using a hybrid observer -- which consists of a discrete state observer and a continuous state observer. We focus our attention on anomalies caused by intelligent attacks, which may bypass existing anomaly detection methods because neither the event sequence nor the observed residuals appear to be anomalous. Based on the relation between the continuous and discrete variables, we define three conflict types and give the conditions under which the detection of the anomalies is guaranteed. We call this method conflict-driven anomaly detection. The effectiveness of this method is demonstrated mathematically and illustrated on a Train-Gate (TG) system
    • …
    corecore