8,586 research outputs found

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions

    Full text link
    To plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict pedestrian motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.Comment: Submitted to 2014 International Workshop on the Algorithmic Foundations of Robotic

    A Framework of Hybrid Force/Motion Skills Learning for Robots

    Get PDF
    Human factors and human-centred design philosophy are highly desired in today’s robotics applications such as human-robot interaction (HRI). Several studies showed that endowing robots of human-like interaction skills can not only make them more likeable but also improve their performance. In particular, skill transfer by imitation learning can increase usability and acceptability of robots by the users without computer programming skills. In fact, besides positional information, muscle stiffness of the human arm, contact force with the environment also play important roles in understanding and generating human-like manipulation behaviours for robots, e.g., in physical HRI and tele-operation. To this end, we present a novel robot learning framework based on Dynamic Movement Primitives (DMPs), taking into consideration both the positional and the contact force profiles for human-robot skills transferring. Distinguished from the conventional method involving only the motion information, the proposed framework combines two sets of DMPs, which are built to model the motion trajectory and the force variation of the robot manipulator, respectively. Thus, a hybrid force/motion control approach is taken to ensure the accurate tracking and reproduction of the desired positional and force motor skills. Meanwhile, in order to simplify the control system, a momentum-based force observer is applied to estimate the contact force instead of employing force sensors. To deploy the learned motion-force robot manipulation skills to a broader variety of tasks, the generalization of these DMP models in actual situations is also considered. Comparative experiments have been conducted using a Baxter Robot to verify the effectiveness of the proposed learning framework on real-world scenarios like cleaning a table

    Barrier Functions in Cascaded Controller: Safe Quadrotor Control

    Full text link
    Safe control for inherently unstable systems such as quadrotors is crucial. Imposing multiple dynamic constraints simultaneously on the states for safety regulation can be a challenging problem. In this paper, we propose a quadratic programming (QP) based approach on a cascaded control architecture for quadrotors to enforce safety. Safety regions are constructed using control barrier functions (CBF) while explicitly considering the nonlinear underactuated dynamics of the quadrotor. The safety regions constructed using CBFs establish a non-conservative forward invariant safe region for quadrotor navigation. Barriers imposed across the cascaded architecture allows independent safety regulation in quadrotor's altitude and lateral domains. Despite barriers appearing in a cascaded fashion, we show preservation of safety for quadrotor motion in SE(3). We demonstrate the feasibility of our method on a quadrotor in simulation with static and dynamic constraints enforced on position and velocity spaces simultaneously.Comment: Submitted to ACC 2020, 8 pages, 7 figure

    Feedback MPC for Torque-Controlled Legged Robots

    Full text link
    The computational power of mobile robots is currently insufficient to achieve torque level whole-body Model Predictive Control (MPC) at the update rates required for complex dynamic systems such as legged robots. This problem is commonly circumvented by using a fast tracking controller to compensate for model errors between updates. In this work, we show that the feedback policy from a Differential Dynamic Programming (DDP) based MPC algorithm is a viable alternative to bridge the gap between the low MPC update rate and the actuation command rate. We propose to augment the DDP approach with a relaxed barrier function to address inequality constraints arising from the friction cone. A frequency-dependent cost function is used to reduce the sensitivity to high-frequency model errors and actuator bandwidth limits. We demonstrate that our approach can find stable locomotion policies for the torque-controlled quadruped, ANYmal, both in simulation and on hardware.Comment: Paper accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019
    • …
    corecore