6,739 research outputs found

    Trajectory generator for autonomous vehicles in urban environments

    Get PDF
    International audienceNowadays, some developments in the vehicle industry permit a safe and comfortable driving. However, several manufactures and research groups are still working in the improvement of the control strategies and path smoothing algorithms. In this paper, a new trajectory generation approach for autonomous vehicles in urban scenarios, considering parametric equations, is proposed. An algorithm that considers Bezier curves and circumference parametric equations for a real vehicle, specifically in roundabout and urban intersections is presented. This approach is generated in real time and can be adapted to dynamic changes in the route. A smooth trajectory generator computationally efficient and easily implementable is proposed. Moreover, this new trajectory generator reduces the control actions, generated with to a fuzzy controller. Some trials have been performed in an urban circuit with promising performance

    Motion Planning in Urban Environments: Part I

    Get PDF
    We present the motion planning framework for an autonomous vehicle navigating through urban environments. Such environments present a number of motion planning challenges, including ultra-reliability, high-speed operation, complex inter-vehicle interaction, parking in large unstructured lots, and constrained maneuvers. Our approach combines a model-predictive trajectory generation algorithm for computing dynamically-feasible actions with two higher-level planners for generating long range plans in both on-road and unstructured areas of the environment. In this Part I of a two-part paper, we describe the underlying trajectory generator and the on-road planning component of this system. We provide examples and results from ldquoBossrdquo, an autonomous SUV that has driven itself over 3000 kilometers and competed in, and won, the Urban Challenge

    Team MIT Urban Challenge Technical Report

    Get PDF
    This technical report describes Team MITs approach to theDARPA Urban Challenge. We have developed a novel strategy forusing many inexpensive sensors, mounted on the vehicle periphery,and calibrated with a new cross-­modal calibrationtechnique. Lidar, camera, and radar data streams are processedusing an innovative, locally smooth state representation thatprovides robust perception for real­ time autonomous control. Aresilient planning and control architecture has been developedfor driving in traffic, comprised of an innovative combination ofwell­proven algorithms for mission planning, situationalplanning, situational interpretation, and trajectory control. These innovations are being incorporated in two new roboticvehicles equipped for autonomous driving in urban environments,with extensive testing on a DARPA site visit course. Experimentalresults demonstrate all basic navigation and some basic trafficbehaviors, including unoccupied autonomous driving, lanefollowing using pure-­pursuit control and our local frameperception strategy, obstacle avoidance using kino-­dynamic RRTpath planning, U-­turns, and precedence evaluation amongst othercars at intersections using our situational interpreter. We areworking to extend these approaches to advanced navigation andtraffic scenarios

    TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents

    Full text link
    To safely and efficiently navigate in complex urban traffic, autonomous vehicles must make responsible predictions in relation to surrounding traffic-agents (vehicles, bicycles, pedestrians, etc.). A challenging and critical task is to explore the movement patterns of different traffic-agents and predict their future trajectories accurately to help the autonomous vehicle make reasonable navigation decision. To solve this problem, we propose a long short-term memory-based (LSTM-based) realtime traffic prediction algorithm, TrafficPredict. Our approach uses an instance layer to learn instances' movements and interactions and has a category layer to learn the similarities of instances belonging to the same type to refine the prediction. In order to evaluate its performance, we collected trajectory datasets in a large city consisting of varying conditions and traffic densities. The dataset includes many challenging scenarios where vehicles, bicycles, and pedestrians move among one another. We evaluate the performance of TrafficPredict on our new dataset and highlight its higher accuracy for trajectory prediction by comparing with prior prediction methods.Comment: Accepted by AAAI(Oral) 201
    corecore