13,150 research outputs found

    Barrier Functions in Cascaded Controller: Safe Quadrotor Control

    Full text link
    Safe control for inherently unstable systems such as quadrotors is crucial. Imposing multiple dynamic constraints simultaneously on the states for safety regulation can be a challenging problem. In this paper, we propose a quadratic programming (QP) based approach on a cascaded control architecture for quadrotors to enforce safety. Safety regions are constructed using control barrier functions (CBF) while explicitly considering the nonlinear underactuated dynamics of the quadrotor. The safety regions constructed using CBFs establish a non-conservative forward invariant safe region for quadrotor navigation. Barriers imposed across the cascaded architecture allows independent safety regulation in quadrotor's altitude and lateral domains. Despite barriers appearing in a cascaded fashion, we show preservation of safety for quadrotor motion in SE(3). We demonstrate the feasibility of our method on a quadrotor in simulation with static and dynamic constraints enforced on position and velocity spaces simultaneously.Comment: Submitted to ACC 2020, 8 pages, 7 figure

    Feedback MPC for Torque-Controlled Legged Robots

    Full text link
    The computational power of mobile robots is currently insufficient to achieve torque level whole-body Model Predictive Control (MPC) at the update rates required for complex dynamic systems such as legged robots. This problem is commonly circumvented by using a fast tracking controller to compensate for model errors between updates. In this work, we show that the feedback policy from a Differential Dynamic Programming (DDP) based MPC algorithm is a viable alternative to bridge the gap between the low MPC update rate and the actuation command rate. We propose to augment the DDP approach with a relaxed barrier function to address inequality constraints arising from the friction cone. A frequency-dependent cost function is used to reduce the sensitivity to high-frequency model errors and actuator bandwidth limits. We demonstrate that our approach can find stable locomotion policies for the torque-controlled quadruped, ANYmal, both in simulation and on hardware.Comment: Paper accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019

    Safety Control Synthesis with Input Limits: a Hybrid Approach

    Full text link
    We introduce a hybrid (discrete--continuous) safety controller which enforces strict state and input constraints on a system---but only acts when necessary, preserving transparent operation of the original system within some safe region of the state space. We define this space using a Min-Quadratic Barrier function, which we construct along the equilibrium manifold using the Lyapunov functions which result from linear matrix inequality controller synthesis for locally valid uncertain linearizations. We also introduce the concept of a barrier pair, which makes it easy to extend the approach to include trajectory-based augmentations to the safe region, in the style of LQR-Trees. We demonstrate our controller and barrier pair synthesis method in simulation-based examples.Comment: 6 pages, 7 figures. Accepted for publication at the 2018 American Controls Conference. Copyright IEEE 201

    Minimum-time trajectory generation for quadrotors in constrained environments

    Full text link
    In this paper, we present a novel strategy to compute minimum-time trajectories for quadrotors in constrained environments. In particular, we consider the motion in a given flying region with obstacles and take into account the physical limitations of the vehicle. Instead of approaching the optimization problem in its standard time-parameterized formulation, the proposed strategy is based on an appealing re-formulation. Transverse coordinates, expressing the distance from a frame path, are used to parameterise the vehicle position and a spatial parameter is used as independent variable. This re-formulation allows us to (i) obtain a fixed horizon problem and (ii) easily formulate (fairly complex) position constraints. The effectiveness of the proposed strategy is proven by numerical computations on two different illustrative scenarios. Moreover, the optimal trajectory generated in the second scenario is experimentally executed with a real nano-quadrotor in order to show its feasibility.Comment: arXiv admin note: text overlap with arXiv:1702.0427

    On-line Joint Limit Avoidance for Torque Controlled Robots by Joint Space Parametrization

    Full text link
    This paper proposes control laws ensuring the stabilization of a time-varying desired joint trajectory, as well as joint limit avoidance, in the case of fully-actuated manipulators. The key idea is to perform a parametrization of the feasible joint space in terms of exogenous states. It follows that the control of these states allows for joint limit avoidance. One of the main outcomes of this paper is that position terms in control laws are replaced by parametrized terms, where joint limits must be avoided. Stability and convergence of time-varying reference trajectories obtained with the proposed method are demonstrated to be in the sense of Lyapunov. The introduced control laws are verified by carrying out experiments on two degrees-of-freedom of the humanoid robot iCub.Comment: 8 pages, 4 figures. Submitted to the 2016 IEEE-RAS International Conference on Humanoid Robot
    • …
    corecore