2 research outputs found

    Trajectory Estimation Using Relative Distances Extracted from Inter-image Homographies

    No full text
    The main idea of this paper is to use distances between camera positions to recover the trajectory of a mobile robot. We consider a mobile platform equipped with a single fixed camera using images of the floor and their associated inter-image homographies to find these distances. We show that under the assumptions that the camera is rigidly mounted with a constant tilt and travelling at a constant height above the floor, the distance between two camera positions may be expressed in terms of the condition number of the inter-image homography. Experiments are conducted on synthetic data to verify that the derived distance formula gives distances close to the true ones and is not too sensitive to noise. We also describe how the robot trajectory may be represented as a graph with edge lengths determined by the distances computed using the formula above, and present one possible method to construct this graph given some of these distances. The experiments show promising results

    Homography-Based Positioning and Planar Motion Recovery

    Get PDF
    Planar motion is an important and frequently occurring situation in mobile robotics applications. This thesis concerns estimation of ego-motion and pose of a single downwards oriented camera under the assumptions of planar motion and known internal camera parameters. The so called essential matrix (or its uncalibrated counterpart, the fundamental matrix) is frequently used in computer vision applications to compute a reconstruction in 3D of the camera locations and the observed scene. However, if the observed points are expected to lie on a plane - e.g. the ground plane - this makes the determination of these matrices an ill-posed problem. Instead, methods based on homographies are better suited to this situation.One section of this thesis is concerned with the extraction of the camera pose and ego-motion from such homographies. We present both a direct SVD-based method and an iterative method, which both solve this problem. The iterative method is extended to allow simultaneous determination of the camera tilt from several homographies obeying the same planar motion model. This extension improves the robustness of the original method, and it provides consistent tilt estimates for the frames that are used for the estimation. The methods are evaluated using experiments on both real and synthetic data.Another part of the thesis deals with the problem of computing the homographies from point correspondences. By using conventional homography estimation methods for this, the resulting homography is of a too general class and is not guaranteed to be compatible with the planar motion assumption. For this reason, we enforce the planar motion model at the homography estimation stage with the help of a new homography solver using a number of polynomial constraints on the entries of the homography matrix. In addition to giving a homography of the right type, this method uses only \num{2.5} point correspondences instead of the conventional four, which is good \eg{} when used in a RANSAC framework for outlier removal
    corecore