4 research outputs found

    Descreening of Color Halftone Images in the Frequency Domain

    Get PDF
    Scanning a halftone image introduces halftone artifacts, known as Moiré patterns, which significantly degrade the image quality. Printers that use amplitude modulation (AM) screening for halftone printing position dots in a periodic pattern. Therefore, frequencies relating halftoning are easily identifiable in the frequency domain. This paper proposes a method for descreening scanned color halftone images using a custom band reject filter designed to isolate and remove only the frequencies related to halftoning while leaving image edges sharp without image segmentation or edge detection. To enable hardware acceleration, the image is processed in small overlapped windows. The windows are filtered individually in the frequency domain, then pieced back together in a method that does not show blocking artifacts

    A document image model and estimation algorithm for optimized JPEG decompression

    Get PDF
    The JPEG standard is one of the most prevalent image compression schemes in use today. While JPEG was designed for use with natural images, it is also widely used for the encoding of raster documents. Unfortunately, JPEG\u27s characteristic blocking and ringing artifacts can severely degrade the quality of text and graphics in complex documents. We propose a JPEG decompression algorithm which is designed to produce substantially higher quality images from the same standard JPEG encodings. The method works by incorporating a document image model into the decoding process which accounts for the wide variety of content in modern complex color documents. The method works by first segmenting the JPEG encoded document into regions corresponding to background, text, and picture content. The regions corresponding to text and background are then decoded using maximum a posteriori (MAP) estimation. Most importantly, the MAP reconstruction of the text regions uses a model which accounts for the spatial characteristics of text and graphics. Our experimental comparisons to the baseline JPEG decoding as well as to three other decoding schemes, demonstrate that our method substantially improves the quality of decoded images, both visually and as measured by PSNR

    Training-based descreening

    No full text
    Abstract—Conventional halftoning methods employed in electrophotographic printers tend to produce Moiré artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moiré problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moiré artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise. Index Terms—Descreening, halftone, Moiré artifacts, resolution synthesis, smallest univalue segment assimilating nucleus (SUSAN) filter. I
    corecore