6,430 research outputs found

    DeLight-Net: Decomposing Reflectance Maps into Specular Materials and Natural Illumination

    Full text link
    In this paper we are extracting surface reflectance and natural environmental illumination from a reflectance map, i.e. from a single 2D image of a sphere of one material under one illumination. This is a notoriously difficult problem, yet key to various re-rendering applications. With the recent advances in estimating reflectance maps from 2D images their further decomposition has become increasingly relevant. To this end, we propose a Convolutional Neural Network (CNN) architecture to reconstruct both material parameters (i.e. Phong) as well as illumination (i.e. high-resolution spherical illumination maps), that is solely trained on synthetic data. We demonstrate that decomposition of synthetic as well as real photographs of reflectance maps, both in High Dynamic Range (HDR), and, for the first time, on Low Dynamic Range (LDR) as well. Results are compared to previous approaches quantitatively as well as qualitatively in terms of re-renderings where illumination, material, view or shape are changed.Comment: Stamatios Georgoulis and Konstantinos Rematas contributed equally to this wor

    Learning to Look Around: Intelligently Exploring Unseen Environments for Unknown Tasks

    Full text link
    It is common to implicitly assume access to intelligently captured inputs (e.g., photos from a human photographer), yet autonomously capturing good observations is itself a major challenge. We address the problem of learning to look around: if a visual agent has the ability to voluntarily acquire new views to observe its environment, how can it learn efficient exploratory behaviors to acquire informative observations? We propose a reinforcement learning solution, where the agent is rewarded for actions that reduce its uncertainty about the unobserved portions of its environment. Based on this principle, we develop a recurrent neural network-based approach to perform active completion of panoramic natural scenes and 3D object shapes. Crucially, the learned policies are not tied to any recognition task nor to the particular semantic content seen during training. As a result, 1) the learned "look around" behavior is relevant even for new tasks in unseen environments, and 2) training data acquisition involves no manual labeling. Through tests in diverse settings, we demonstrate that our approach learns useful generic policies that transfer to new unseen tasks and environments. Completion episodes are shown at https://goo.gl/BgWX3W

    ShapeCodes: Self-Supervised Feature Learning by Lifting Views to Viewgrids

    Full text link
    We introduce an unsupervised feature learning approach that embeds 3D shape information into a single-view image representation. The main idea is a self-supervised training objective that, given only a single 2D image, requires all unseen views of the object to be predictable from learned features. We implement this idea as an encoder-decoder convolutional neural network. The network maps an input image of an unknown category and unknown viewpoint to a latent space, from which a deconvolutional decoder can best "lift" the image to its complete viewgrid showing the object from all viewing angles. Our class-agnostic training procedure encourages the representation to capture fundamental shape primitives and semantic regularities in a data-driven manner---without manual semantic labels. Our results on two widely-used shape datasets show 1) our approach successfully learns to perform "mental rotation" even for objects unseen during training, and 2) the learned latent space is a powerful representation for object recognition, outperforming several existing unsupervised feature learning methods.Comment: To appear at ECCV 201

    Weakly supervised 3D Reconstruction with Adversarial Constraint

    Full text link
    Supervised 3D reconstruction has witnessed a significant progress through the use of deep neural networks. However, this increase in performance requires large scale annotations of 2D/3D data. In this paper, we explore inexpensive 2D supervision as an alternative for expensive 3D CAD annotation. Specifically, we use foreground masks as weak supervision through a raytrace pooling layer that enables perspective projection and backpropagation. Additionally, since the 3D reconstruction from masks is an ill posed problem, we propose to constrain the 3D reconstruction to the manifold of unlabeled realistic 3D shapes that match mask observations. We demonstrate that learning a log-barrier solution to this constrained optimization problem resembles the GAN objective, enabling the use of existing tools for training GANs. We evaluate and analyze the manifold constrained reconstruction on various datasets for single and multi-view reconstruction of both synthetic and real images

    Dense 3D Object Reconstruction from a Single Depth View

    Get PDF
    In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike existing work which typically requires multiple views of the same object or class labels to recover the full 3D geometry, the proposed 3D-RecGAN++ only takes the voxel grid representation of a depth view of the object as input, and is able to generate the complete 3D occupancy grid with a high resolution of 256^3 by recovering the occluded/missing regions. The key idea is to combine the generative capabilities of autoencoders and the conditional Generative Adversarial Networks (GAN) framework, to infer accurate and fine-grained 3D structures of objects in high-dimensional voxel space. Extensive experiments on large synthetic datasets and real-world Kinect datasets show that the proposed 3D-RecGAN++ significantly outperforms the state of the art in single view 3D object reconstruction, and is able to reconstruct unseen types of objects.Comment: TPAMI 2018. Code and data are available at: https://github.com/Yang7879/3D-RecGAN-extended. This article extends from arXiv:1708.0796
    • …
    corecore