20,798 research outputs found

    Random Neural Networks and Optimisation

    Get PDF
    In this thesis we introduce new models and learning algorithms for the Random Neural Network (RNN), and we develop RNN-based and other approaches for the solution of emergency management optimisation problems. With respect to RNN developments, two novel supervised learning algorithms are proposed. The first, is a gradient descent algorithm for an RNN extension model that we have introduced, the RNN with synchronised interactions (RNNSI), which was inspired from the synchronised firing activity observed in brain neural circuits. The second algorithm is based on modelling the signal-flow equations in RNN as a nonnegative least squares (NNLS) problem. NNLS is solved using a limited-memory quasi-Newton algorithm specifically designed for the RNN case. Regarding the investigation of emergency management optimisation problems, we examine combinatorial assignment problems that require fast, distributed and close to optimal solution, under information uncertainty. We consider three different problems with the above characteristics associated with the assignment of emergency units to incidents with injured civilians (AEUI), the assignment of assets to tasks under execution uncertainty (ATAU), and the deployment of a robotic network to establish communication with trapped civilians (DRNCTC). AEUI is solved by training an RNN tool with instances of the optimisation problem and then using the trained RNN for decision making; training is achieved using the developed learning algorithms. For the solution of ATAU problem, we introduce two different approaches. The first is based on mapping parameters of the optimisation problem to RNN parameters, and the second on solving a sequence of minimum cost flow problems on appropriately constructed networks with estimated arc costs. For the exact solution of DRNCTC problem, we develop a mixed-integer linear programming formulation, which is based on network flows. Finally, we design and implement distributed heuristic algorithms for the deployment of robots when the civilian locations are known or uncertain

    Hidden Markov Models and their Application for Predicting Failure Events

    Full text link
    We show how Markov mixed membership models (MMMM) can be used to predict the degradation of assets. We model the degradation path of individual assets, to predict overall failure rates. Instead of a separate distribution for each hidden state, we use hierarchical mixtures of distributions in the exponential family. In our approach the observation distribution of the states is a finite mixture distribution of a small set of (simpler) distributions shared across all states. Using tied-mixture observation distributions offers several advantages. The mixtures act as a regularization for typically very sparse problems, and they reduce the computational effort for the learning algorithm since there are fewer distributions to be found. Using shared mixtures enables sharing of statistical strength between the Markov states and thus transfer learning. We determine for individual assets the trade-off between the risk of failure and extended operating hours by combining a MMMM with a partially observable Markov decision process (POMDP) to dynamically optimize the policy for when and how to maintain the asset.Comment: Will be published in the proceedings of ICCS 2020; @Booklet{EasyChair:3183, author = {Paul Hofmann and Zaid Tashman}, title = {Hidden Markov Models and their Application for Predicting Failure Events}, howpublished = {EasyChair Preprint no. 3183}, year = {EasyChair, 2020}

    Contextualized Word Representations for Reading Comprehension

    Full text link
    Reading a document and extracting an answer to a question about its content has attracted substantial attention recently. While most work has focused on the interaction between the question and the document, in this work we evaluate the importance of context when the question and document are processed independently. We take a standard neural architecture for this task, and show that by providing rich contextualized word representations from a large pre-trained language model as well as allowing the model to choose between context-dependent and context-independent word representations, we can obtain dramatic improvements and reach performance comparable to state-of-the-art on the competitive SQuAD dataset.Comment: 6 pages, 1 figure, NAACL 201
    • …
    corecore