1,926 research outputs found

    From Data Topology to a Modular Classifier

    Full text link
    This article describes an approach to designing a distributed and modular neural classifier. This approach introduces a new hierarchical clustering that enables one to determine reliable regions in the representation space by exploiting supervised information. A multilayer perceptron is then associated with each of these detected clusters and charged with recognizing elements of the associated cluster while rejecting all others. The obtained global classifier is comprised of a set of cooperating neural networks and completed by a K-nearest neighbor classifier charged with treating elements rejected by all the neural networks. Experimental results for the handwritten digit recognition problem and comparison with neural and statistical nonmodular classifiers are given

    Distributed Online Big Data Classification Using Context Information

    Full text link
    Distributed, online data mining systems have emerged as a result of applications requiring analysis of large amounts of correlated and high-dimensional data produced by multiple distributed data sources. We propose a distributed online data classification framework where data is gathered by distributed data sources and processed by a heterogeneous set of distributed learners which learn online, at run-time, how to classify the different data streams either by using their locally available classification functions or by helping each other by classifying each other's data. Importantly, since the data is gathered at different locations, sending the data to another learner to process incurs additional costs such as delays, and hence this will be only beneficial if the benefits obtained from a better classification will exceed the costs. We model the problem of joint classification by the distributed and heterogeneous learners from multiple data sources as a distributed contextual bandit problem where each data is characterized by a specific context. We develop a distributed online learning algorithm for which we can prove sublinear regret. Compared to prior work in distributed online data mining, our work is the first to provide analytic regret results characterizing the performance of the proposed algorithm

    A consensus based network intrusion detection system

    Full text link
    Network intrusion detection is the process of identifying malicious behaviors that target a network and its resources. Current systems implementing intrusion detection processes observe traffic at several data collecting points in the network but analysis is often centralized or partly centralized. These systems are not scalable and suffer from the single point of failure, i.e. attackers only need to target the central node to compromise the whole system. This paper proposes an anomaly-based fully distributed network intrusion detection system where analysis is run at each data collecting point using a naive Bayes classifier. Probability values computed by each classifier are shared among nodes using an iterative average consensus protocol. The final analysis is performed redundantly and in parallel at the level of each data collecting point, thus avoiding the single point of failure issue. We run simulations focusing on DDoS attacks with several network configurations, comparing the accuracy of our fully distributed system with a hierarchical one. We also analyze communication costs and convergence speed during consensus phases.Comment: Presented at THE 5TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY 2015 IN KUALA LUMPUR, MALAYSI

    Efficient exploration of unknown indoor environments using a team of mobile robots

    Get PDF
    Whenever multiple robots have to solve a common task, they need to coordinate their actions to carry out the task efficiently and to avoid interferences between individual robots. This is especially the case when considering the problem of exploring an unknown environment with a team of mobile robots. To achieve efficient terrain coverage with the sensors of the robots, one first needs to identify unknown areas in the environment. Second, one has to assign target locations to the individual robots so that they gather new and relevant information about the environment with their sensors. This assignment should lead to a distribution of the robots over the environment in a way that they avoid redundant work and do not interfere with each other by, for example, blocking their paths. In this paper, we address the problem of efficiently coordinating a large team of mobile robots. To better distribute the robots over the environment and to avoid redundant work, we take into account the type of place a potential target is located in (e.g., a corridor or a room). This knowledge allows us to improve the distribution of robots over the environment compared to approaches lacking this capability. To autonomously determine the type of a place, we apply a classifier learned using the AdaBoost algorithm. The resulting classifier takes laser range data as input and is able to classify the current location with high accuracy. We additionally use a hidden Markov model to consider the spatial dependencies between nearby locations. Our approach to incorporate the information about the type of places in the assignment process has been implemented and tested in different environments. The experiments illustrate that our system effectively distributes the robots over the environment and allows them to accomplish their mission faster compared to approaches that ignore the place labels

    Mockingbird: Defending Against Deep-Learning-Based Website Fingerprinting Attacks with Adversarial Traces

    Full text link
    Website Fingerprinting (WF) is a type of traffic analysis attack that enables a local passive eavesdropper to infer the victim's activity, even when the traffic is protected by a VPN or an anonymity system like Tor. Leveraging a deep-learning classifier, a WF attacker can gain over 98% accuracy on Tor traffic. In this paper, we explore a novel defense, Mockingbird, based on the idea of adversarial examples that have been shown to undermine machine-learning classifiers in other domains. Since the attacker gets to design and train his attack classifier based on the defense, we first demonstrate that at a straightforward technique for generating adversarial-example based traces fails to protect against an attacker using adversarial training for robust classification. We then propose Mockingbird, a technique for generating traces that resists adversarial training by moving randomly in the space of viable traces and not following more predictable gradients. The technique drops the accuracy of the state-of-the-art attack hardened with adversarial training from 98% to 42-58% while incurring only 58% bandwidth overhead. The attack accuracy is generally lower than state-of-the-art defenses, and much lower when considering Top-2 accuracy, while incurring lower bandwidth overheads.Comment: 18 pages, 13 figures and 8 Tables. Accepted in IEEE Transactions on Information Forensics and Security (TIFS
    • ā€¦
    corecore