523 research outputs found

    Optimization of the Suburban Railway Train Operation Plan Based on the Zonal Mode

    Get PDF
    Traditional all-stop train operation mode cannot meet the demand of long travel distance and centralized travel of commuters very well. To meet this special travel demand, a zonal train operation mode based on “many-to-many” train stops is proposed. The coefficient of passenger exchange is used to locate suburban areas by depicting travel characteristics of commuters. Operational separating points within the suburban area are used as decision variables to analyze the combined cost components of this model, including passenger travel costs and railway operating costs. An integer programming model with the lowest overall cost is established, and the genetic algorithm is employed to solve it. The results proved good relative benefits in operation costs and travel time. And the sensitivity analysis of both coefficient of passenger exchange and passenger intensity has shown that the zonal operation mode is suitable for suburban railways with centralized travelers. However, the research also shows that when the passenger volume rose to a very high level, the number of zones would be limited by the maximized capacity of railway lines, which may cause the decline of the relative operational efficiency

    A Stop-Probability Approach for O-D Service Frequency on High-Speed Railway Lines

    Get PDF
    Train stop planning provides appropriate service for travel demand and stations and plays a significant role in railway operation. This paper formulates stop planning from the point of view of direct travel between origin-destination (O-D) stations and proposes an analytical method to theoretically derive optimal service frequencies for O-D demand on different levels. Considering different O-D demand characteristics and train service types, we introduce the concept of stop probability to present the mathematical formulation for stop planning with the objective of minimizing per capita travel time, which is solved by an iterative algorithm combined with local search. The resulting optimal stop probabilities can be used to calculate the required service frequency for each train type serving different demand categories. Numerical examples, based on three real-life high-speed railway lines, demonstrate the validity of the proposed method. The proposed approach provides a more flexible and practical way for stop planning that explicitly takes into account the importance of different stations and passenger travel characteristics. Document type: Articl

    Optimization Methods in Modern Transportation Systems

    Get PDF
    One of the greatest challenges in the public transportation network is the optimization of the passengers waiting time, where it is necessary to find a compromise between the satisfaction of the passengers and the requirements of the transport companies. This paper presents a detailed review of the available literature dealing with the problem of passenger transport in order to optimize the passenger waiting time at the station and to meet the requirements of companies (maximize profits or minimize cost). After a detailed discussion, the paper clarifies the most important objectives in solving a timetabling problem: the requirements and satisfaction of passengers, passenger waiting time and capacity of vehicles. At the end, the appropriate algorithms for solving the set of optimization models are presented

    Optimized Skip-Stop Metro Line Operation Using Smart Card Data

    Get PDF

    Optimizing High-Speed Railroad Timetable with Passenger and Station Service Demands: A Case Study in the Wuhan-Guangzhou Corridor

    Get PDF
    This paper aims to optimize high-speed railroad timetables for a corridor. We propose an integer programming model using a time-space network-based approach to consider passenger service demands, train scheduling, and station service demands simultaneously. A modified branch-and-price algorithm is used for the computation. This algorithm solves the linear relaxation of all nodes in a branch-and-bound tree using a column generation algorithm to derive a lower-bound value (LB) and derive an upper-bound value (UB) using a rapid branching strategy. The optimal solution is derived by iteratively updating the upper- and lower-bound values. Three acceleration strategies, namely, initial solution iteration, delayed constraints, and column removal, were designed to accelerate the computation. The effectiveness and efficiency of the proposed model and algorithm were tested using Wuhan-Guangzhou high-speed railroad data. The results show that the proposed model and algorithm can quickly reduce the defined cost function by 38.2% and improve the average travel speed by 10.7 km/h, which indicates that our proposed model and algorithm can effectively improve the quality of a constructed train timetable and the travel efficiency for passengers. Document type: Articl

    Timetable Design for Minimizing Passenger Travel Time and Congestion for a Single Metro Line

    Get PDF
    This paper brings a proposal for a timetable optimization model for minimizing the passenger travel time and congestion for a single metro line under time-dependent demand. The model is an integer-programming model that systemically considers the passenger travel time, the capacity of trains, and the capacity of platforms. A multi-objective function and a recursive optimization method are presented to solve the optimization problem. Using the model we can obtain an efficient timetable with minimal passenger travel time and minimal number of congestion events on platforms. Moreover, by increasing the number of dispatches, the critical point from congestion state to free-flow state and the optimal timetable with minimal cost for avoiding congestion on platforms can be obtained. The effectiveness of the model is evaluated by a real example. A half-regular timetable with fixed headways in each operation period and an irregular timetable with unfixed headway are investigated for comparison.</p

    Analysis of the Theory and Traffic Scheduling for Transit Network by Genetic Algorithm-Based Optimization Technique

    Get PDF
    This work utilizes the transit network, which aims to combine the genetic algorithm for analyzing the theory and traffic scheduling based on the traditional methodology. The dynamic methodology is used to schedule the model of transit system, which aims to optimize the demand in the transit network. This model illustrates the methodology of the genetic based transit network (GATN) algorithm to enhance the primary challenges in the transit network. The proposed methodology provides to be significant, with minimizing the objective model of around 27.2%. The model significantly managed to lower the total routes available in the transit network and all travelers related to the time and the transit trip from the initial stage. The significant system obtained using the optimization methodology has 180 routes, 110 less than the initial network, which has a variation by different transit network. This final transmission has been minimized to 33.6% by the proposed methodology in the transit network length and 4.1% reduction in the transfer average. The transition obtained from the multi-level objective function to unique optimization that considers the weighted function proved to be effective
    • …
    corecore