3 research outputs found

    Power Consumption and Carbon Emission Equivalent for Virtualized Resources – An Analysis: Virtual Machine and Container Analysis for Greener Data Center

    Get PDF
    The International Energy Agency (IEA) revealed that the worldwide energy-related carbon dioxide (CO2) situation has hit a historic high of 33.1 Giga tonnes (Gt) of CO2. 85% of the rise in emissions was due to China, India, and the United States. The increase in emissions in India was 4.8%, or 105 Mega tonnes (Mt) of CO2, with the increase in emissions being evenly distributed across the transportation and industrial sectors, according to Beloglazov et al (2011). Environmental contamination brought on by carbon emissions is harmful to the environment. As a result, there is an urgent need for the IT sectors to develop effective and efficient technology to eliminate such carbon emissions. The primary focus is on lowering carbon emissions due to widespread awareness of the issue

    Multi-Agent Deep Reinforcement Learning for Request Dispatching in Distributed-Controller Software-Defined Networking

    Full text link
    Recently, distributed controller architectures have been quickly gaining popularity in Software-Defined Networking (SDN). However, the use of distributed controllers introduces a new and important Request Dispatching (RD) problem with the goal for every SDN switch to properly dispatch their requests among all controllers so as to optimize network performance. This goal can be fulfilled by designing an RD policy to guide distribution of requests at each switch. In this paper, we propose a Multi-Agent Deep Reinforcement Learning (MA-DRL) approach to automatically design RD policies with high adaptability and performance. This is achieved through a new problem formulation in the form of a Multi-Agent Markov Decision Process (MA-MDP), a new adaptive RD policy design and a new MA-DRL algorithm called MA-PPO. Extensive simulation studies show that our MA-DRL technique can effectively train RD policies to significantly outperform man-made policies, model-based policies, as well as RD policies learned via single-agent DRL algorithms
    corecore