3 research outputs found

    Optimal Time-dependent Sequenced Route Queries in Road Networks

    Full text link
    In this paper we present an algorithm for optimal processing of time-dependent sequenced route queries in road networks, i.e., given a road network where the travel time over an edge is time-dependent and a given ordered list of categories of interest, we find the fastest route between an origin and destination that passes through a sequence of points of interest belonging to each of the specified categories of interest. For instance, considering a city road network at a given departure time, one can find the fastest route between one's work and his/her home, passing through a bank, a supermarket and a restaurant, in this order. The main contribution of our work is the consideration of the time dependency of the network, a realistic characteristic of urban road networks, which has not been considered previously when addressing the optimal sequenced route query. Our approach uses the A* search paradigm that is equipped with an admissible heuristic function, thus guaranteed to yield the optimal solution, along with a pruning scheme for further reducing the search space. In order to compare our proposal we extended a previously proposed solution aimed at non-time dependent sequenced route queries, enabling it to deal with the time-dependency. Our experiments using real and synthetic data sets have shown our proposed solution to be up to two orders of magnitude faster than the temporally extended previous solution.Comment: 10 pages, 12 figures To be published as a short paper in the 23rd ACM SIGSPATIA

    Mobile objects and sensors within a video surveillance system: Spatio-temporal model and queries

    Get PDF
    International audienceThe videos recorded by video surveillance systems represent a key element in a police inquiry. Based on a spatio-temporal query specified by a victim, (e.g., the trajectory of the victim before and after the aggression) the human operators select the cameras that could contain relevant information and analyse the corresponding video contents. This task becomes cumbersome because of the huge volume of video contents and the cameras' mobility. This paper presents an approach, which assists the operator in his task and reduces the research space. We propose to model the cameras' network (fixed and mobile cameras) on top of the city's transportation network. We consider the video surveillance system as a multilayer geographic information system, where the cameras are situated into a distinct layer, which is added on top of the other layers (e.g., roads, transport) and is related to them by the location. The model is implemented in a spatio-temporal database. Our final goal is that based on a spatio-temporal query to automatically extract the list of cameras (fixed and mobile) concerned by the query. We propose to include this automatically computed relative position of the cameras as an extension of the standard ISO 22311

    Traffic aware route planning in dynamic road networks

    No full text
    The current widespread use of GPS navigations and trip planning on web has aroused great interests in fast and scalable path query processing. Recent research has mainly focused on static route optimisation where the traffic network is assumed to be stable. However in most cases, route planning is in presence of frequent updates to the traffic graph due to the dynamic nature of traffic network, and such updates always greatly affect the performance of route planning. Most existing methods, however, cannot effectively support traffic aware route planning. In this paper, a new strategy is proposed to handle this problem. We analysis the traffic condition on the road network and explore spatial-temporal knowledge to guide effective route planning. In particular, a set of effective techniques are used to avoid both unnecessary calculations on huge graph and excessive re-calculations caused by traffic condition updates. A comprehensive experiment is also conducted to evaluate the strategy performances
    corecore