21 research outputs found

    Tradeoffs in worst-case equilibria

    Get PDF
    AbstractWe investigate the problem of routing traffic through a congested network in an environment of non-cooperative users. We use the worst-case coordination ratio suggested by Koutsoupias and Papadimitriou to measure the performance degradation due to the lack of a centralized traffic regulating authority. We provide a full characterization of the worst-case coordination ratio in the restricted assignment and unrelated parallel links model. In particular, we quantify the tradeoff between the “negligibility” of the traffic controlled by each user and the worst-case coordination ratio. We analyze both pure and mixed strategies systems and identify the range where their performance is similar

    Non-clairvoyant Scheduling Games

    Full text link
    In a scheduling game, each player owns a job and chooses a machine to execute it. While the social cost is the maximal load over all machines (makespan), the cost (disutility) of each player is the completion time of its own job. In the game, players may follow selfish strategies to optimize their cost and therefore their behaviors do not necessarily lead the game to an equilibrium. Even in the case there is an equilibrium, its makespan might be much larger than the social optimum, and this inefficiency is measured by the price of anarchy -- the worst ratio between the makespan of an equilibrium and the optimum. Coordination mechanisms aim to reduce the price of anarchy by designing scheduling policies that specify how jobs assigned to a same machine are to be scheduled. Typically these policies define the schedule according to the processing times as announced by the jobs. One could wonder if there are policies that do not require this knowledge, and still provide a good price of anarchy. This would make the processing times be private information and avoid the problem of truthfulness. In this paper we study these so-called non-clairvoyant policies. In particular, we study the RANDOM policy that schedules the jobs in a random order without preemption, and the EQUI policy that schedules the jobs in parallel using time-multiplexing, assigning each job an equal fraction of CPU time

    On the inefficiency of equilibria in linear bottleneck congestion games

    Get PDF
    We study the inefficiency of equilibrium outcomes in bottleneck congestion games. These games model situations in which strategic players compete for a limited number of facilities. Each player allocates his weight to a (feasible) subset of the facilities with the goal to minimize the maximum (weight-dependent) latency that he experiences on any of these facilities. We derive upper and (asymptotically) matching lower bounds on the (strong) price of anarchy of linear bottleneck congestion games for a natural load balancing social cost objective (i.e., minimize the maximum latency of a facility). We restrict our studies to linear latency functions. Linear bottleneck congestion games still constitute a rich class of games and generalize, for example, load balancing games with identical or uniformly related machines with or without restricted assignments

    An improved bound for the price of anarchy for related machine scheduling

    Full text link
    In this paper, we introduce an improved upper bound for the efficiency of Nash equilibria in utilitarian scheduling games on related machines. The machines have varying speeds and adhere to the Shortest Processing Time (SPT) policy as the global order for job processing. The goal of each job is to minimize its completion time, while the social objective is to minimize the sum of completion times. Our main result provides an upper bound of 212(2m1)2-\frac{1}{2\cdot(2m-1)} on the price of anarchy for the general case of mm machines. We improve this bound to 3/2 for the case of two machines, and to 212m2-\frac{1}{2\cdot m} for the general case of mm machines when the machines have divisible speeds

    Scheduling Games with Machine-Dependent Priority Lists

    Full text link
    We consider a scheduling game in which jobs try to minimize their completion time by choosing a machine to be processed on. Each machine uses an individual priority list to decide on the order according to which the jobs on the machine are processed. We characterize four classes of instances in which a pure Nash equilibrium (NE) is guaranteed to exist, and show, by means of an example, that none of these characterizations can be relaxed. We then bound the performance of Nash equilibria for each of these classes with respect to the makespan of the schedule and the sum of completion times. We also analyze the computational complexity of several problems arising in this model. For instance, we prove that it is NP-hard to decide whether a NE exists, and that even for instances with identical machines, for which a NE is guaranteed to exist, it is NP-hard to approximate the best NE within a factor of 21mϵ2-\frac{1}{m}-\epsilon for all ϵ>0\epsilon>0. In addition, we study a generalized model in which players' strategies are subsets of resources, each having its own priority list over the players. We show that in this general model, even unweighted symmetric games may not have a pure NE, and we bound the price of anarchy with respect to the total players' costs.Comment: 19 pages, 2 figure

    A new model for selfish routing

    Get PDF
    AbstractIn this work, we introduce and study a new, potentially rich model for selfish routing over non-cooperative networks, as an interesting hybridization of the two prevailing such models, namely the KPmodel [E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413] and the Wmodel [J.G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the of the Institute of Civil Engineers 1 (Pt. II) (1952) 325–378].In the hybrid model, each of n users is using a mixed strategy to ship its unsplittable traffic over a network consisting of m parallel links. In a Nash equilibrium, no user can unilaterally improve its Expected Individual Cost. To evaluate Nash equilibria, we introduce Quadratic Social Cost as the sum of the expectations of the latencies, incurred by the squares of the accumulated traffic. This modeling is unlike the KP model, where Social Cost [E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413] is the expectation of the maximum latency incurred by the accumulated traffic; but it is like the W model since the Quadratic Social Cost can be expressed as a weighted sum of Expected Individual Costs. We use the Quadratic Social Cost to define Quadratic Coordination Ratio. Here are our main findings: •Quadratic Social Cost can be computed in polynomial time. This is unlike the #P-completeness [D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis, The structure and complexity of Nash equilibria for a selfish routing game, in: P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz, R. Conejo (Eds.), Proceedings of the 29th International Colloquium on Automata, Languages and Programming, in: Lecture Notes in Computer Science, vol. 2380, Springer-Verlag, 2002, pp. 123–134] of computing Social Cost for the KP model.•For the case of identical users and identical links, the fully mixed Nash equilibrium [M. Mavronicolas, P. Spirakis, The price of selfish routing, Algorithmica 48 (1) (2007) 91–126], where each user assigns positive probability to every link, maximizes Quadratic Social Cost.•As our main result, we present a comprehensive collection of tight, constant (that is, independent of m and n), strictly less than 2, lower and upper bounds on the Quadratic Coordination Ratio for several, interesting special cases. Some of the bounds stand in contrast to corresponding super-constant bounds on the Coordination Ratio previously shown in [A. Czumaj, B. Vöcking, Tight bounds for worst-case equilibria, ACM Transactions on Algorithms 3 (1) (2007); E. Koutsoupias, M. Mavronicolas, P. Spirakis, Approximate equilibria and ball fusion, Theory of Computing Systems 36 (6) (2003) 683–693; E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413; M. Mavronicolas, P. Spirakis, The price of selfish routing, Algorithmica 48 (1) (2007) 91–126] for the KP model
    corecore